Skip to main content

Advertisement

Log in

Saponin-mediated synthesis of hydroxyapatite by hydrothermal method: characteristics, bioactivity, and antimicrobial behavior

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Hydroxyapatite- (HAp) and saponin-mediated hydroxyapatite (Sap-HAp) were synthesized by hydrothermal method. The rationale behind the choice of saponin is due to its good biological properties and its ability to serve as a surfactant. Calcium nitrate tetrahydrate and ammonium dihydrogen phosphate were used as the precursors and the concentration of saponin was varied from 0.5 to 5 g. Hydrothermal treatment was performed at 200 °C for 5 h. The HAp and Sap-HAp’s were characterized for their morphological features, elemental composition, structural characteristics, and nature of functional groups. In addition, in vitro bioactivity and antimicrobial activity of these samples were also evaluated. HAp exhibits nanorod-shaped morphology with varying length. The length of the nanorods is decreased significantly for Sap-HAp’s prepared using 0.5, 1, and 3 g of saponin. Nevertheless, the particle size distribution is uniform for these samples when compared to that of the HAp. Sap-HAp prepared using 5 g of saponin exhibits a totally different morphology with acicular structure. HAp and Sap-HAp’s consist of phase pure hydroxyapatite while the crystallite size and degree of crystallinity is decreased for the Sap-HAp’s. Fourier-transform infrared spectra confirm the presence of peaks pertaining to hydroxyl, phosphate, and carbonate groups in all the samples while a decrease in intensity of these peaks is observed for Sap-HAp’s when compared to that of the HAp. Sap-HAp’s shows a better bioactivity in terms of apatite formation after immersion in simulated body fluid at 37 °C for 21 days than the HAp. HAp fails to display any measurable zone of growth against S. aureus, P. aeruginosa, and C. albicans. The Sap-HAp’s did not show any sign of inhibition against the growth of S. aureus while they are effective against the growth of P. aeruginosa and C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akinpelu, B.A., Igbeneghu, O.A., Awotunde, A.I., Iwalewa, E.O., Oyedapo, O.O.: Antioxidant and antibacterial activities of saponin fractions of Erythropheleum suaveolens (Guill. and Perri.) stem bark extract. Sci Res Essays. 9, 826–833 (2014)

    CAS  Google Scholar 

  2. Amer, W., Abdelouahdi, K., Ramananarivo, H.R., Zahouily, M., Varma, R.Z., Solhy, A.: Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates. CrystEngComm. 16, 543–549 (2014)

    CAS  Google Scholar 

  3. Arabski M., Wegierek-Ciuk A., Czerwonka G., Lankoff A., Kaca W.: Effects of saponins against clinical E.coli strains and eukaryotic cell line. J Biomed Biotechnol. 2012, 1–6 (2012)

    Google Scholar 

  4. Avato, P., Bucci, R., Tava, A., Vitali, C., Rosato, A., Bialy, Z., Jurzysta, M.: Antimicrobial activity of saponins from Medicago sp.: structure-activity relationship. Phytother Res. 20, 454–457 (2006)

    CAS  Google Scholar 

  5. Bricha, M., Belmamouni, Y., Essassi, E.M., Ferreira, J.M.F., Mabrouk, K.E.: Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanopowders. J Nanosci Nanotechnol. 12, 1–8 (2012)

    Google Scholar 

  6. Calderone R.A., Clancy C.J. (Eds): Candida and Candidiasis, 2nd Edn. American Society for Microbiology Press, Washington, ISBN: 9781555815394 (2012)

  7. Cox, S.C., Jamshidi, P., Grover, L.M., Mallick, K.K.: Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C. 35, 106–114 (2014)

    CAS  Google Scholar 

  8. Cummings, L.J., Snyder, M.A., Brisack, K.: Protein chromatography on hydroxyapatite columns. Methods Enzymol. 463, 387–404 (2009)

    CAS  Google Scholar 

  9. Do Carmo, L.S., Cummings, C., Linardi, V.R., Dias, R.S., De Suoza, J.M., De Sena, M.J., Dos Santos, D.A., Shupp, J.W., Pereira, R.K., Jett, M.: A cause of massive staphylococcal food poisoning incident. Foodborne Pathog Dis. 1, 241–246 (2004)

    Google Scholar 

  10. Dorozhkin, S.V.: Bioceramics of calcium orthophosphates. Biomaterials. 31, 1465–1485 (2010)

    CAS  Google Scholar 

  11. Fihri, A., Len, C., Varma, R.S., Solhy: A hydroxyapatite: a review of synthesis, structure and applications in heterogeneous catalysis. Coord Chem Rev. 347, 48–76 (2017)

    CAS  Google Scholar 

  12. Gao, F., Wang, Q., Gao, N., Yang, Y., Cai, F., Yamane, M., Gao, F., Tanaka, H.: Hydroxyapatite/chemically reduced graphene oxide composite: environment-friendly synthesis and high-performance electrochemical sensing for hydrazine. Biosens Bioelectron. 97, 238–245 (2017)

    CAS  Google Scholar 

  13. Ghasemi, E., Sillanpää, M.: Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples. J Sep Sci. 38, 164–169 (2015)

    CAS  Google Scholar 

  14. Giamarellos-Bourboulis, E.J., Grecka, P., Dionyssiou-Asteriou, A., Giamarellou, H.: In vitro interactions of gamma-linolenic acid and arachidonic acid with ceftazoline on multiresistant Pseudomonas aeruginosa. Lipids. 34, 151–152 (1999)

    Google Scholar 

  15. Gopiesh Khanna, V., Kannabiran, K.: Antimicrobial activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrate. World J Microbiol Biotechnol. 24, 2737–2740 (2008)

    CAS  Google Scholar 

  16. Güçlü-Üstündağ, O., Mazza, G.: Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 47, 231–258 (2007)

    Google Scholar 

  17. Hasani-Sadrabadi, M.M., Mokarram, N., Azami, M., Dashtimoghadam, E., Majedi, F.S., Jacob, K.I.: Preparation and characterization of nanocomposite polyelectrolyte membranes based on Nafion® ionomer and nanocrystalline hydroxyapatite. Polymer. 52, 1286–1296 (2011)

    CAS  Google Scholar 

  18. Hassan S.M.: Antimicrobial activities of saponin-rich guar meal extract. Ph.D. thesis, Texas A&M University, College Station, USA (2008)

  19. Hostettmann, K., Marston, A.: Saponins. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  20. Iqbal, N., Kadir, M.R.A., Mahmood, N.H., Salim, N., Froemming, G.R.A., Balaji, H.R., Kamarul, T.: Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int. 40, 4507–4513 (2014)

    CAS  Google Scholar 

  21. Iwamoto, T., Hieda, Y., Kogai, Y.: Effect of hydroxyapatite surface morphology on cell adhesion. Mater Sci Eng C. 69, 1263–1267 (2016)

    CAS  Google Scholar 

  22. Iyyappan, E., Wilson, P., Sheela, K., Ramya, R.: Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods. Mater Sci Eng C. 63, 554–562 (2016)

    CAS  Google Scholar 

  23. Jacob, M.C., Favre, M., Bensa, J.C.: Membrane cell permeabilisation with saponin and multiparametric analysis by flow cytometry. Cytometry. 12, 550–558 (1991)

    CAS  Google Scholar 

  24. Johnson, A.M.: Saponins as agents preventing infection caused by common waterborne pathogens. Ph.D. Thesis, The University of Texas at Arlington, Arlington, Texas, USA (2013)

  25. Kaczorek, E., Smułek, W., Zdarta, A., Sawczuk, A., Zgoła-Grześkowiak, A.: Influence of saponins on the biodegradation of halogenated phenols, Ecotoxicol. Environ Saf. 311, 127–134 (2016)

    Google Scholar 

  26. Kanchana, P., Sekar, C.: EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid. Mater Sci Eng C. 42, 601–607 (2014)

    CAS  Google Scholar 

  27. Khalid, M., Mujahid, M., Amin, S., Rawat, R.S., Nusair, A., Deen, G.R.: Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceram Int. 39, 39–50 (2013)

    CAS  Google Scholar 

  28. Kim, H.M., Himeno, T., Kokubo, T., Nakamura, T.: Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 26, 4366–4373 (2005)

    CAS  Google Scholar 

  29. Kluytmans, J., Van Belkum, A., Verburgh, H.: Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, underlying mechanisms and associated risks. Clin Microbiol Rev. 10, 505–520 (1997)

    CAS  Google Scholar 

  30. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T.: Solutions able to reproduce in vivo surface structure changes in bioactive glass ceramic A-W3. J Biomed Mater Res. 24, 721–734 (1990)

    CAS  Google Scholar 

  31. Koutsopoulos, S.: Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 62, 600–612 (2002)

    CAS  Google Scholar 

  32. Kurien, T., Pearson, R.G., Scammell, B.E.: Bone graft substitutes currently available in orthopaedic practice. Bone Joint J. 95B, 583–597 (2013)

    Google Scholar 

  33. Leelavathy, L., Anbu, S., Kandaswamy, M., Karthikeyan, N., Mohan, N.: Synthesis and characterization of a new series of unsymmetrical macrocyclic binuclear vanadyl (IV) complexes: electrochemical, antimicrobial, DNA binding and cleavage studies. Polyhedron. 28, 903–910 (2009)

    CAS  Google Scholar 

  34. LeGeros, R.Z.: Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 14, 65–88 (1993)

    CAS  Google Scholar 

  35. Lin, K., Wu, C., Chang, J.: Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 10, 4071–4102 (2014)

    CAS  Google Scholar 

  36. Liu, J., Ye, X., Wang, H., Zhu, M., Wang, B., Yan, H.: The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int. 29, 629–633 (2003)

    CAS  Google Scholar 

  37. Liu, Y., Hou, D., Wang, G.: A simple wet chemical synthesis and characterization of hydroxyapatite nanorods. Mater Chem Phys. 86, 69–73 (2004)

    CAS  Google Scholar 

  38. Lung, C.Y.K., Sarfraz, Z., Habib, A., Khan, A.S., Matinlinna, J.P.: Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. J Mech Behav Biomed. 54, 283–294 (2016)

    CAS  Google Scholar 

  39. Ma, T., Xia, Z., Liao, L.: Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route. Appl Surf Sci. 257, 4384–4388 (2011)

    CAS  Google Scholar 

  40. Mabilleau, G., Filmon, R., Petrov, P.K., Basle, M.F., Sabokbar, A., Chappard, D.: Cobalt, chromium and nickel affect hydroxyapatite crystal growth in vitro. Acta Biomater. 6, 1555–1560 (2010)

    CAS  Google Scholar 

  41. Manoj, M., Mangalraj, D., Ponpandian, N., Viswanathan, C.: Core shell hydroxyapatite/Mg nanostructures: surfactant free facile synthesis, characterization and their in-vitro cell viability studies against leukaemia cancer cells (K562). RSC Adv. 5, 48705–48711 (2015)

    CAS  Google Scholar 

  42. Moghimipour, E., Handali, S.: Saponin: properties, methods of evaluation and applications. Annu Res Rev Biol. 5, 207–220 (2015)

    Google Scholar 

  43. Morales, J.M., Iafisco, M., Delgado-López, J.M., Sarda, S., Drouet, C.: Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater. 59, 1–46 (2013)

    Google Scholar 

  44. Moreira, M.P., Soares, G.D.A., Dentzer, J., Anselme, K., Sena, L.A., Kuznetsov, A., Santos, E.A.: Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater Sci Eng C. 61, 736–743 (2016)

    CAS  Google Scholar 

  45. Morrissey, R., Rodriguez-Lorenzo, L.M., Gross, K.A.: Influence of ferrous iron incorporation on the structure of hydroxyapatite. J Mater Sci Mater Med. 387–392 (2005, 16)

    CAS  Google Scholar 

  46. Mucalo, M. (ed.): Hydroxyapatite (HAp) for Biomedical Applications. Woodhead Publishing Series in Biomaterials, Elsevier-Woodhead Publishers, Cambridge (2015)

    Google Scholar 

  47. Oleszek, W.: Saponins. In: Naidu, A.S. (ed.) Natural Food Antimicrobial Systems, pp. 1–30. CRC Press, London (2000)

    Google Scholar 

  48. Osbourn, A.: Saponins and plant defense—a soap story. Trends Plant Sci. 1, 4–9 (1996)

    Google Scholar 

  49. Sahithi, K., Swetha, M., Prabaharan, M., Moorthi, A., Saranya, N., Ramasamy, K., Srinivasan, N., Partridge, N.C., Selvamurugan, N.: Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol. 6, 333–339 (2010)

    CAS  Google Scholar 

  50. Salarian, M., Solati-Hashjin, M., Shafiei, S.S., Goudarzi, A., Salarian, R., Nemati, Z.A.: Surfactant-assisted synthesis and characterization of hydroxyapatite nanorods under hydrothermal conditions. Mater Sci Poland. 27, 961–971 (2009a)

    CAS  Google Scholar 

  51. Salarian, M., Solati-Hashjin, M., Shafiei, S.S., Salarian, R., Nemati, Z.A.: Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol. Ceram Int. 35, 2563–2569 (2009)

    CAS  Google Scholar 

  52. Samal, K., Das, C., Mohanty, K.: Eco-friendly biosurfactant saponin for the solubilization of cationic and anionic dyes in aqueous system. Dyes Pigments. 140, 100–108 (2017)

    CAS  Google Scholar 

  53. Sanoj Rejinold, N., Muthunarayanan, M., Muthuchelian, K., Chennazhi, K.P., Nair, S.V., Jayakumar, R.: Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr Polym. 84, 407–416 (2011)

    Google Scholar 

  54. Shiba, K., Motozuka, S., Yamaguchi, T., Ogawa, N., Otsuka, Y., Ohnuma, K., Kataoka, T., Tagaya, M.: Effect of cationic surfactant micelles on hydroxyapatite nanocrystal formation: an investigation into the inorganic−organic interfacial interactions. Cryst Growth Des. 16, 1463–1471 (2016)

    CAS  Google Scholar 

  55. Singh, B., Singh, J.P., Singh, N., Kaur, A.: Saponins in pulses and their health promoting activities: a review. Food Chem. 223, 540–549 (2017)

    Google Scholar 

  56. Soetan, K.O., Oyekunle, M.A., Aiyelaagbe, O.O., Fafunso, M.A.: Evaluation of the antimicrobial activity of saponins extract of Sorghum Bicolor L. Moench. Afr J Biotechnol. 5, 2405–2407 (2006)

    CAS  Google Scholar 

  57. Sparg, S.G., Light, M.E., Van Staden, J.: Biological activities and distribution of plant saponins. J Ethnopharmacol. 94, 219–243 (2004)

    CAS  Google Scholar 

  58. Subha, B., Varun Prasath, P., Abinaya, R., Kavitha, R.J., Ravichandran, K.: Synthesis and characterization of nano-hydroxyapatite using Sapindus mukorossi extract. AIP Conf Proc. 1665(050127), 1–3 (2015)

    Google Scholar 

  59. Sundar, S., Mariappan, R., Min, K., Piraman, S.: Facile biosurfactant assisted biocompatible α-Fe2O3 nanorods and nanospheres synthesis, magneto physicochemical characteristics and their enhanced biomolecules sensing ability. RSC Adv. 6, 77133–77142 (2016)

    CAS  Google Scholar 

  60. Sundar, S., Piraman, S.: Greener saponin induced morphologically controlled various polymorphs of nanostructured iron oxide materials for biosensor applications. RSC Adv. 5, 74408–74415 (2015)

    CAS  Google Scholar 

  61. Sydnor, E.R.M., Perl, T.M.: Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev. 24, 141–173 (2011)

    CAS  Google Scholar 

  62. Szcześ, A., Hołysz, L., Chibowski, E.: Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci Sci. 249, 321–330 (2017)

    Google Scholar 

  63. Taheri, M.M., Abdul Kadir, M.R., Shokuhfar, T., Hamlekhan, A., Assadian, M., Shirdar, M.R., Mirjalilie, A.: Surfactant-assisted hydrothermal synthesis of fluoridated hydroxyapatite nanorods. Ceram Int. 41, 9867–9872 (2015)

    CAS  Google Scholar 

  64. Tang, J., He, J., Liu, T., Xin, X.: Removal of heavy metals with sequential sludge washing techniques using saponin: optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism. RSC Adv. 7(3), 3385–33401 (2017)

    Google Scholar 

  65. Tank, K.P., Chudasama, K.S., Thaker, V.S., Joshi, M.J.: Cobalt-doped nano- hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J Nanopart Res. 15, 1644 (2013)

    Google Scholar 

  66. Viswanath, B., Ravishankar, N.: Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone. Biomaterials. 29, 4855–4863 (2008)

    CAS  Google Scholar 

  67. Wang, X., Zhuang, J., Peng, Q., Li, Y.D.: Liquid–solid–solution synthesis of biomedical hydroxyapatite nanorods. Adv Mater. 18, 2031–2034 (2006b)

    CAS  Google Scholar 

  68. Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J., Wang, X.: Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Mater Lett. 60, 1484–1487 (2006a)

    CAS  Google Scholar 

  69. Xue, W., Liu, X., Zheng, X., Ding, C.: Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J Biomed Mater Res A. 74, 553–561 (2005)

    Google Scholar 

  70. Yang, C., Wang, J.: Preparation and characterization of collagen microspheres for sustained release of steroidal saponins. Mater Res. 17, 1644–1650 (2014)

    Google Scholar 

  71. Yang, Y., Perez-Amodio, S., Barre‘ re-de Groot, F.Y.F., Everts, V., Blitterswijk, C.A.V., Habibovic, P.: The effects of inorganic additives to calcium phosphate on in vitro behaviour of osteoblasts and osteoclasts. Biomaterials. 31, 2976–2989 (2010)

    CAS  Google Scholar 

  72. Yu, Y.D., Zhu, Y.J., Qi, C., Jiang, Y.Y., Li, H., Wu, J.: Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers. J Colloid Interface Sci. 496, 416–424 (2017)

    CAS  Google Scholar 

  73. Zhang, H.B., Zhou, K.C., Li, Z.Y., Huang, S.P.: Plate-like hydroxyapatite nanoparticles synthesized by the hydrothermal method. J Phys Chem Solids. 70, 243–248 (2009)

    CAS  Google Scholar 

  74. Zhang, J., Jiang, D., Zhang, J., Lin, Q., Huang, Z.: Synthesis of organized hydroxyapatite (HA) using triton X-100. Ceram Int. 36, 2441–2447 (2010)

    CAS  Google Scholar 

  75. Zhang, X., Vecchio, K.S.: Hydrothermal synthesis of hydroxyapatite rods. J Cryst Growth. 308, 133–140 (2007)

    CAS  Google Scholar 

  76. Zhao, X.Y., Zhu, Y.J., Chen, F., Lu, B.Q., Qi, C., Zhao, J., Wu, J.: Hydrothermal synthesis of hydroxyapatite nanorods and nanowires using riboflavin-59-phosphate monosodium salt as a new phosphorus source and their application in protein adsorption. CrystEngComm. 15, 7926–7935 (2013)

    CAS  Google Scholar 

  77. Zhou, C., Hong, Y., Zhang, X.: Applications of nanostructured calcium phosphate in tissue engineering. Biomater Sci. 1, 1012–1028 (2013)

    CAS  Google Scholar 

  78. Zilm, M.E., Chen, L., Sharma, V., McDannald, A., Jain, M., Ramprasad, R., Wei, M.: Hydroxyapatite substituted by transition metals: experiment and theory. Phys Chem Chem Phys. 18, 16457–16465 (2016)

    CAS  Google Scholar 

  79. Zuo, G., Wei, X., Sun, H., Liu, S., Zong, P., Zeng, X., Shen, Y.: Morphology controlled synthesis of nano-hydroxyapatite using polyethylene glycol as a template. J Alloys Compd. 692, 693–697 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Director, National Centre for Nanoscience and Nanotechnology (NCNSNT), University of Madras, Chennai, India, for providing FE-SEM/EDS facilities for characterization and Mr. N. Karthikeyan, CAS in botany, University of Madras, Chennai, India, for his help in performing the antimicrobial studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravichandran Kulandaivelu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, S., Rajendran, A., Kulandaivelu, R. et al. Saponin-mediated synthesis of hydroxyapatite by hydrothermal method: characteristics, bioactivity, and antimicrobial behavior. J Aust Ceram Soc 55, 953–967 (2019). https://doi.org/10.1007/s41779-019-00307-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00307-9

Keywords

Navigation