Skip to main content
Log in

Characterization and thermal behavior of hydroxyapatite prepared by precipitation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study was to find appropriate precipitation conditions (Ca/P ratio, pH and precipitation rate) for the synthesis of hydroxyapatite (HAP; Ca10(PO4)6(OH)2) and to determine the effect of precipitation conditions on its thermal behavior. Hydroxyapatite was synthesized by precipitation. Three ratios of Ca/P (1; 1.67; 3) were selected for the synthesis, then pH 7 and 12 was selected, and the ammonium dihydrogen phosphate precipitation rate was set to 2 mL min−1. The prepared powders were studied from the standpoint of particle size distribution, crystal size and morphology (optical microscope, scanning electron microscope), phase composition (X-ray diffraction analysis) and thermal stability in relation to the Ca/P ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. 2nd ed. Amsterdam: Elsevier; 1994.

    Google Scholar 

  2. Rivera-Muñoz EM. Hydroxyapatite-based materials: synthesis and characterization. In: Intech; 2011.

  3. Friedman H. Complete information guide to rock, minerals and gemstones: the apatite mineral group. Minerals.net: the mineral and gemstone kingdom. 2014. http://www.minerals.net/mineral/apatite.aspx. Accessed 10 Sept 2018.

  4. Kalendová A. Technologie nátěrových hmot I.: pigmenty a hnojiva pro nátěrvé hmoty, 1st ed. Pardubice: Univerzita Pardubice; 2003.

    Google Scholar 

  5. Yang YH, Liu CH, Liang YH, Lin FH, Wu KCW. Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J Mater Chem. 2013;1:2447–50.

    Article  CAS  Google Scholar 

  6. Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH. Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci. 1976;11:2027–35.

    Article  CAS  Google Scholar 

  7. Bellucci D, Sola A, Gazzarri M, Chiellini F, Cannillo V. A new hydroxyapatite-based biocomposite for bone replacement. Mater Sci Eng. 2013;33:1091–101.

    Article  CAS  Google Scholar 

  8. Gruselle M. Apatites: a new family of catalysts in organic synthesis. J Organomet Chem. 2015;793:93–101.

    Article  CAS  Google Scholar 

  9. Gupta N, Kushwaha AK, Chattopadhyaya MC, Taiwan J. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. Inst Chem Eng. 2012;43:125–31.

    CAS  Google Scholar 

  10. Salah TA, Mohammad AM, Hassan MA, El-Anadouli BE, Taiwan J. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. Inst Chem Eng. 2014;45:1571–7.

    CAS  Google Scholar 

  11. Kanchana P, Sekar C. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid. Mater Sci Eng. 2014;42:601–7.

    Article  CAS  Google Scholar 

  12. Kemiha M, Minh DP, Lyczko N, Nzihou A, Sharrock P. Highly porous calcium hydroxyapatite-based composites for air pollution control. Procedia Eng. 2014;83:394–402.

    Article  CAS  Google Scholar 

  13. Huang Y, Hao M, Nian X. Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition. Ceram Int. 2016;42:11876–88.

    Article  CAS  Google Scholar 

  14. Gorodylova N, Dohnalová Ž, Šulcová P. Influence of synthesis conditions on physicochemical parameters and corrosion inhibiting activity of strontium pyrophosphates SrMIIP2O7 (MII = Mg and Zn). Prog Org Coat. 2016;93:77–86.

    Article  CAS  Google Scholar 

  15. Meejoo S, Maneeprakorn W, Winotai P. Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim Acta. 2006;447:115–20.

    Article  CAS  Google Scholar 

  16. Kumta PN, Sfeir C, Lee DH, Olton D, Choi D. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomater. 2005;1:65–83.

    Article  Google Scholar 

  17. Wang PE, Chaki TK. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J Mater Sci Mater Med. 1993;4:150–8.

    Article  CAS  Google Scholar 

  18. Tampieri A, Celotti G, Szontagh F, Landi E. Crystallinity in apatites: how can a truly disordered fraction be distinguished from nanosize crystalline domains. J Mater Sci Mater Med. 1997;17:1079–87.

    Google Scholar 

  19. Savino K, Yates MZ. Thermal stability of electrochemical–hydrothermal hydroxyapatite coatings. Ceram Int. 2015;41:8568–77.

    Article  CAS  Google Scholar 

  20. Sun R, Chen K, Liao Z, Meng N. Controlled synthesis and thermal stability of hydroxyapatite hierarchical microstructures. Mater Res Bull. 2013;48:1143–7.

    Article  Google Scholar 

  21. Šimková L, Gorodylova N, Dohnalová Ž, Šulcová P. Influence of precipitation conditions on the synthesis of hydroxyapatite. Ceram Silik. 2018;62:1–9.

    Google Scholar 

  22. Harvey D. Modern analytical chemistry, 1st ed. Knoxville: University of Tennessee; 2008.

    Google Scholar 

  23. Hermassi M, Valderrama C, Dosta J, Cortina JL, Batis NH. Evaluation of hydroxyapatite crystallization in a batch reactor for the valorization of alkaline phosphate concentrates from wastewater treatment plants using calcium chloride. Chem Eng J. 2015;267:142–52.

    Article  CAS  Google Scholar 

  24. Chetty AS, Wepener I, Marei MK, Kamary YE, Moussa RM. Synthesis, properties, and applications of hydroxyapatite. In: Hydroxyapatite: synthesis, properties and applications. New York: Nova Scie Pub Inc; 2012. pp. 91–133.

Download references

Acknowledgements

This work has been supported by IGU University of Pardubice (SGS_2018_007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Šimková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šimková, L., Šulcová, P. Characterization and thermal behavior of hydroxyapatite prepared by precipitation. J Therm Anal Calorim 138, 321–329 (2019). https://doi.org/10.1007/s10973-019-08144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08144-5

Keywords

Navigation