Skip to main content
Log in

Recent Advances in Graphene Quantum Dots as Bioimaging Probes

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

The emerging graphene quantum dots (GQDs) have gained tremendous attention for their enormous potential in biological applications, owing to their unique and tunable photoluminescence properties, exceptional physicochemical features, high biocompatibility, small sizes and low costs. This mini review aims to update the latest results in rapidly evolving bioimaging research and to provide critical insights into exciting future developments. We firstly provide a brief review of their synthesis and optical properties and then place emphasis on both in vitro and in vivo imaging applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. [71]. Copyright 2013 Royal Society of Chemistry

Fig. 2

Reprinted with permission from Ref. [138]. Copyright 2012 American Chemical Society

Fig. 3

Reprinted with permission from ref. [122]. Copyright 2015 Royal Society of Chemistry

Fig. 4

Reprinted with permission from ref. [124]. Copyright 2014 Macmillan Publishers Limited

Fig. 5

Reprinted with permission from ref. [120]. Copyright 2015 Royal Society of Chemistry

Fig. 6

Reprinted with permission from ref. [161]. Copyright 2013 Wiley-VCH

Fig. 7

Reprinted with permission from Ref. [72]. Copyright 2013 American Chemical Society

Fig. 8

Reprinted with permission from Ref. [136]. Copyright 2014 Macmillan Publishers Limited

Similar content being viewed by others

References

  1. Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–44.

    Article  CAS  PubMed  Google Scholar 

  2. Sameiro M, Goncalves T. Fluorescent labeling of biomolecules with organic probes. Chem Rev. 2009;109:190–212.

    Article  CAS  Google Scholar 

  3. Griffin BA, Adams SR, Tsien RY. Specific covalent labeling of recombinant protein molecules inside live cells. Science. 1998;281:269–72.

    Article  CAS  PubMed  Google Scholar 

  4. Baker M. Nanotechnology imaging probes: smaller and more stable. Nat Methods. 2010;7:957–62.

    Article  CAS  Google Scholar 

  5. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou J, Yang Y, Zhang CY. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev. 2015;115:11669–717.

    Article  CAS  PubMed  Google Scholar 

  7. Lee J, Kim K, Park WI, Kim BH, Park JH, Kim TH, et al. Uniform graphene quantum dots patterned from self-assembled silica nanodots. Nano Lett. 2012;12:6078–83.

    Article  CAS  PubMed  Google Scholar 

  8. Shen JH, Zhu YH, Chen C, Yang XL, Li CZ. Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun. 2011;47:2580–2.

    Article  CAS  Google Scholar 

  9. Pan DY, Zhang JC, Li Z, Wu MH. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010;22:734–8.

    Article  CAS  PubMed  Google Scholar 

  10. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc. 2005;127:17604–5.

    Article  CAS  PubMed  Google Scholar 

  11. Mochalin VN, Gogotsi Y. Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc. 2009;131:4594–5.

    Article  CAS  PubMed  Google Scholar 

  12. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 2010;49:6726–44.

    Article  CAS  Google Scholar 

  13. Montalti M, Cantelli A, Battistelli G. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem Soc Rev. 2015;44:4853–921.

    Article  CAS  PubMed  Google Scholar 

  14. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP. Photoluminescent carbogenic dots. Chem Mater. 2008;20:4539–41.

    Article  CAS  Google Scholar 

  15. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP. Surface functionalized carbogenic quantum dots. Small. 2008;4:455–8.

    Article  CAS  PubMed  Google Scholar 

  16. Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater. 2009;21:5563–5.

    Article  CAS  Google Scholar 

  17. Zong J, Zhu YH, Yang XL, Shen JH, Li CZ. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chem Commun. 2011;47:764–6.

    Article  CAS  Google Scholar 

  18. Zhao AD, Chen ZW, Zhao CQ, Gao N, Ren JS, Qu XG. Recent advances in bioapplications of C-dots. Carbon. 2015;85:309–27.

    Article  CAS  Google Scholar 

  19. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11:1620–36.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Yu SH. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today. 2016;19:382–93.

    Article  CAS  Google Scholar 

  21. Zhang ZJ, Zheng TT, Li XM, Xu JY, Zeng HB. Progress of carbon quantum dots in photocatalysis applications. Part Part Syst Charact. 2016;33:457–72.

    Article  Google Scholar 

  22. Cao Y, Zhou H, Qian RC, Liu JQ, Ying YL, Long YT. Analysis of the electron transfer properties of carbon quantum dots on gold nanorod surfaces via plasmonic resonance scattering spectroscopy. Chem Commun. 2017;53:5729–32.

    Article  CAS  Google Scholar 

  23. Niu FS, Ying YL, Hua X, Niu YS, Xu YH, Long YT. Electrochemically generated green-fluorescent N-doped carbon quantum dots for facile monitoring alkaline phosphatase activity based on the Fe3+-mediating ON–OFF–ON–OFF fluorescence principle. Carbon. 2018;127:340–8.

    Article  CAS  Google Scholar 

  24. Shen JH, Zhu YH, Yang XL, Li CZ. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2012;48:3686–99.

    Article  CAS  Google Scholar 

  25. Zhang RZ, Chen W. Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron. 2014;55:83–90.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou JG, Booker C, Li RY, Zhou XT, Sham TK, Sun XL, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc. 2007;129:744–5.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou JG, Cheiftz J, Li RY, Wang FP, Zhou XT, Sham TK, et al. Tailoring multi-wall carbon nanotubes for smaller nanostructures. Carbon. 2009;47:829–38.

    Article  CAS  Google Scholar 

  28. Zhang ZP, Zhang J, Chen N, Qu LT. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci. 2012;5:8869–90.

    Article  CAS  Google Scholar 

  29. Liu RL, Wu DQ, Feng XL, Mullen K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc. 2011;133:15221–3.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou XJ, Zhang Y, Wang C, Wu XC, Yang YQ, Zheng B, et al. Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano. 2012;6:6592–9.

    Article  CAS  PubMed  Google Scholar 

  31. Yan X, Li BS, Li LS. Colloidal graphene quantum dots with well-defined structures. Acc Chem Res. 2013;46:2254–62.

    Article  CAS  PubMed  Google Scholar 

  32. Lim SY, Shen W, Gao ZQ. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44:362–81.

    Article  CAS  PubMed  Google Scholar 

  33. Miao P, Han K, Tang YG, Wang BD, Lin T, Cheng WB. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 2015;7:1586–95.

    Article  CAS  PubMed  Google Scholar 

  34. Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44:4743–68.

    Article  CAS  PubMed  Google Scholar 

  35. Li LL, Wu GH, Yang GH, Peng J, Zhao JW, Zhu JJ. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 2013;5:4015–39.

    Article  CAS  PubMed  Google Scholar 

  36. Fan ZT, Li SH, Yuan FL, Fan LZ. Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv. 2015;5:19773–89.

    Article  CAS  Google Scholar 

  37. Xie RB, Wang ZF, Zhou W, Liu YT, Fan LZ, Li YC, et al. Graphene quantum dots as smart probes for biosensing. Anal Methods. 2016;8:4001–16.

    Article  CAS  Google Scholar 

  38. Liu Q, Guo BD, Rao ZY, Zhang BH, Gong JR. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013;13:2436–41.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu SJ, Wang L, Li B, Song YB, Zhao XH, Zhang GY, et al. Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots. Carbon. 2014;77:462–72.

    Article  CAS  Google Scholar 

  40. Xu HB, Zhou SH, Xiao LL, Wang HH, Li SZ, Yuan QH. Fabrication of a nitrogen-doped graphene quantum dot from mof-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J Mater Chem C. 2015;3:291–7.

    Article  CAS  Google Scholar 

  41. Sun HJ, Wu L, Wei WL, Qu XG. Recent advances in graphene quantum dots for sensing. Mater Today. 2013;16:433–42.

    Article  CAS  Google Scholar 

  42. Schroeder KL, Goreham RV, Nann T. Graphene quantum dots for theranostics and bioimaging. Pharm Res. 2016;33:2337–57.

    Article  CAS  PubMed  Google Scholar 

  43. Xu M, Li Z, Zhu X, Hu N, Wei H, Yang Z, et al. Hydrothermal/solvothermal synthesis of graphene quantum dots and their biological applications. Nano Biomed Eng. 2013;5:65–71.

    Article  CAS  Google Scholar 

  44. Benitez-Martinez S, Valcarcel M. Graphene quantum dots in analytical science. TrAC Trend Anal Chem. 2015;72:93–113.

    Article  CAS  Google Scholar 

  45. Du Y, Guo SJ. Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale. 2016;8:2532–43.

    Article  CAS  PubMed  Google Scholar 

  46. Kelarakis A. Graphene quantum dots: in the crossroad of graphene, quantum dots and carbogenic nanoparticles. Curr Opin Colloid Interface Sci. 2015;20:354–61.

    Article  CAS  Google Scholar 

  47. Li XM, Rui MC, Song JZ, Shen ZH, Zeng HB. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater. 2015;25:4929–47.

    Article  CAS  Google Scholar 

  48. Bacon M, Bradley SJ, Nann T. Graphene quantum dots. Part Part Syst Charact. 2014;31:415–28.

    Article  CAS  Google Scholar 

  49. Lin LP, Rong MC, Luo F, Chen DM, Wang YR, Chen X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trend Anal Chem. 2014;54:83–102.

    Article  CAS  Google Scholar 

  50. Ju J, Chen W. Graphene quantum dots as fluorescence probes for sensing metal ions: synthesis and applications. Curr Org Chem. 2015;19:1150–62.

    Article  CAS  Google Scholar 

  51. Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1:203–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128:7756–7.

    Article  CAS  PubMed  Google Scholar 

  53. Shin Y, Park J, Hyun D, Yang J, Lee JH, Kim JH, et al. Acid-free and oxone oxidant-assisted solvothermal synthesis of graphene quantum dots using various natural carbon materials as resources. Nanoscale. 2015;7:5633–7.

    Article  CAS  PubMed  Google Scholar 

  54. Jang MH, Ha HD, Lee ES, Liu F, Kim YH, Seo TS, et al. Is the chain of oxidation and reduction process reversible in luminescent graphene quantum dots? Small. 2015;11:3773–81.

    Article  CAS  PubMed  Google Scholar 

  55. Kwon W, Kim YH, Lee CL, Lee M, Choi HC, Lee TW, et al. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Lett. 2014;14:1306–11.

    Article  CAS  PubMed  Google Scholar 

  56. Dong YQ, Tian WR, Ren SY, Dai RP, Chi YW, Chen GN. Graphene quantum dots/l-cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) ions. ACS Appl Mater Interfaces. 2014;6:1646–51.

    Article  CAS  PubMed  Google Scholar 

  57. Dong YQ, Dai RP, Dong TQ, Chi YW, Chen GN. Photoluminescence, chemiluminescence and anodic electrochemiluminescence of hydrazide-modified graphene quantum dots. Nanoscale. 2014;6:11240–5.

    Article  CAS  PubMed  Google Scholar 

  58. Zheng XT, Than A, Ananthanaraya A, Kim DH, Chen P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7:6278–86.

    Article  CAS  PubMed  Google Scholar 

  59. Ye RQ, Peng ZW, Metzger A, Lin J, Mann JK, Huang KW, et al. Bandgap engineering of coal-derived graphene quantum dots. ACS Appl Mater Interfaces. 2015;7:7041–8.

    Article  CAS  PubMed  Google Scholar 

  60. Dong YQ, Lin JP, Chen YM, Fu FF, Chi YW, Chen GN. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals. Nanoscale. 2014;6:7410–5.

    Article  CAS  PubMed  Google Scholar 

  61. Ye RQ, Xiang CS, Lin J, Peng ZW, Huang KW, Yan Z, et al. Coal as an abundant source of graphene quantum dots. Nat Commun. 2013;4:2943.

    Article  CAS  PubMed  Google Scholar 

  62. Ananthanarayanan A, Wang XW, Routh P, Sana B, Lim S, Kim DH, et al. Facile synthesis of graphene quantum dots from 3d graphene and their application for Fe3+sensing. Adv Funct Mater. 2014;24:3021–6.

    Article  CAS  Google Scholar 

  63. Kim JK, Bae S, Yi YJ, Park MJ, Kim SJ, Myoung N, et al. Origin of white electroluminescence in graphene quantum dots embedded host/guest polymer light emitting diodes. Sci Rep UK. 2015;5:11032.

    Article  CAS  Google Scholar 

  64. Ghosh T, Prasad E. White-light emission from unmodified graphene oxide quantum dots. J Phys Chem C. 2015;119:2733–42.

    Article  CAS  Google Scholar 

  65. Favaro M, Ferrighi L, Fazio G, Colazzo L, Di Vaentin C, Durante C, et al. Single and multiple doping in graphene quantum dots: unraveling the origin of selectivity in the oxygen reduction reaction. ACS Catal. 2015;5:129–44.

    Article  CAS  Google Scholar 

  66. Chen T, Yu H, Yang NE, Wang MD, Ding CD, Fu JJ. Graphene quantum dot-capped mesoporous silica nanoparticles through an acid-cleavable acetal bond for intracellular drug delivery and imaging. J Mater Chem B. 2014;2:4979–82.

    Article  CAS  PubMed  Google Scholar 

  67. Stengl V, Bakardjieva S, Henych J, Lang K, Kormunda M. Blue and green luminescence of reduced graphene oxide quantum dots. Carbon. 2013;63:537–46.

    Article  CAS  Google Scholar 

  68. Kundu S, Yadav RM, Narayanan TN, Shelke MV, Vajtai R, Ajayan PM, et al. Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale. 2015;7:11515–9.

    Article  CAS  PubMed  Google Scholar 

  69. Dong YQ, Pang HC, Ren SY, Chen CQ, Chi YW, Yu T. Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon. 2013;64:245–51.

    Article  CAS  Google Scholar 

  70. Shinde DB, Pillai VK. Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem Eur J. 2012;18:12522–8.

    Article  CAS  PubMed  Google Scholar 

  71. Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee YK. Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun. 2013;49:5079–81.

    Article  CAS  Google Scholar 

  72. Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, et al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 2013;7:6858–67.

    Article  CAS  PubMed  Google Scholar 

  73. Lee E, Ryu J, Jang J. Fabrication of graphene quantum dots via size-selective precipitation and their application in upconversion-based dsscs. Chem Commun. 2013;49:9995–7.

    Article  CAS  Google Scholar 

  74. Chua CK, Sofer Z, Simek P, Jankovsky O, Klimova K, Bakardjieva S, et al. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano. 2015;9:2548–55.

    Article  CAS  PubMed  Google Scholar 

  75. Lu J, Yeo PSE, Gan CK, Wu P, Loh KP. Transforming C60 molecules into graphene quantum dots. Nat Nanotechnol. 2011;6:247–52.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang L, Zhang ZY, Liang RP, Li YH, Qiu JD. Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement. Anal Chem. 2014;86:4423–30.

    Article  CAS  PubMed  Google Scholar 

  77. Yeh TF, Teng CY, Chen SJ, Teng HS. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv Mater. 2014;26:3297–303.

    Article  CAS  PubMed  Google Scholar 

  78. Sekiya R, Uemura Y, Murakami H, Haino T. White-light-emitting edge-functionalized graphene quantum dots. Angew Chem Int Ed. 2014;53:5619–23.

    Article  CAS  Google Scholar 

  79. Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron. 2014;60:64–70.

    Article  CAS  PubMed  Google Scholar 

  80. Luo PH, Ji Z, Li C, Shi GQ. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved ph tolerance. Nanoscale. 2013;5:7361–7.

    Article  CAS  PubMed  Google Scholar 

  81. Jin SH, Kim DH, Jun GH, Hong SH, Jeon S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano. 2013;7:1239–45.

    Article  CAS  PubMed  Google Scholar 

  82. Markovic ZM, Ristic BZ, Arsikin KM, Klisic DG, Harhaji-Trajkovic LM, Todorovic-Markovic BM, et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials. 2012;33:7084–92.

    Article  CAS  PubMed  Google Scholar 

  83. Li Y, Zhao Y, Cheng HH, Hu Y, Shi GQ, Dai LM, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc. 2012;134:15–8.

    Article  CAS  PubMed  Google Scholar 

  84. Li Y, Hu Y, Zhao Y, Shi GQ, Deng LE, Hou YB, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater. 2011;23:776–80.

    Article  CAS  PubMed  Google Scholar 

  85. Lu J, Yang JX, Wang JZ, Lim AL, Wang S, Loh KP. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano. 2009;3:2367–75.

    Article  CAS  PubMed  Google Scholar 

  86. Song SH, Jang MH, Chung J, Jin SH, Kim BH, Hur SH, et al. Highly efficient light-emitting diode of graphene quantum dots fabricated from graphite intercalation compounds. Adv Opt Mater. 2014;2:1016–23.

    Article  CAS  Google Scholar 

  87. Lin LX, Zhang SW. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem Commun. 2012;48:10177–9.

    Article  CAS  Google Scholar 

  88. Wen T, Yang BC, Guo YZ, Sun J, Zhao CM, Zhang SR, et al. Organosilane-functionalized graphene quantum dots and their encapsulation into bi-layer hollow silica spheres for bioimaging applications. Phys Chem Chem Phys. 2014;16:23188–95.

    Article  CAS  PubMed  Google Scholar 

  89. Kumar GS, Roy R, Sen D, Ghorai UK, Thapa R, Mazumder N, et al. Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence. Nanoscale. 2014;6:3384–91.

    Article  CAS  PubMed  Google Scholar 

  90. Feng YQ, Zhao JP, Yan XB, Tang FL, Xue QJ. Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction. Carbon. 2014;66:334–9.

    Article  CAS  Google Scholar 

  91. Dai YQ, Long H, Wang XT, Wang YM, Gu Q, Jiang W, et al. Versatile graphene quantum dots with tunable nitrogen doping. Part Part Syst Charact. 2014;31:597–604.

    Article  CAS  Google Scholar 

  92. Xu QF, Zhou Q, Hua Z, Xue Q, Zhang CF, Wang XY, et al. Single-particle spectroscopic measurements of fluorescent graphene quantum dots. ACS Nano. 2013;7:10654–61.

    Article  CAS  PubMed  Google Scholar 

  93. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, et al. Optically tunable amino-functionalized graphene quantum dots. Adv Mater. 2012;24:5333–8.

    Article  CAS  PubMed  Google Scholar 

  94. Gu J, Hu MJ, Guo QQ, Ding ZF, Sun XL, Yang J. High-yield synthesis of graphene quantum dots with strong green photoluminescence. RSC Adv. 2014;4:50141–4.

    Article  CAS  Google Scholar 

  95. Chen S, Hai X, Chen XW, Wang JH. In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal Chem. 2014;86:6689–94.

    Article  CAS  PubMed  Google Scholar 

  96. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater. 2012;22:2971–9.

    Article  CAS  Google Scholar 

  97. Chen S, Liu JW, Chen ML, Chen XW, Wang JH. Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation. Chem Commun. 2012;48:7637–9.

    Article  CAS  Google Scholar 

  98. Zhuo SJ, Shao MW, Lee ST. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano. 2012;6:1059–64.

    Article  CAS  PubMed  Google Scholar 

  99. Chien CT, Li SS, Lai WJ, Yeh YC, Chen HA, Chen IS, et al. Tunable photoluminescence from graphene oxide. Angew Chem Int Ed. 2012;51:6662–6.

    Article  CAS  Google Scholar 

  100. Wang L, Li WT, Wu B, Li Z, Wang SL, Liu Y, et al. Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem Eng J. 2016;300:75–82.

    Article  CAS  Google Scholar 

  101. Thakur M, Mewada A, Pandey S, Bhori M, Singh K, Sharon M, et al. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater Sci Eng C Mater. 2016;67:468–77.

    Article  CAS  Google Scholar 

  102. Wang QL, Huang XX, Long YJ, Wang XL, Zhang HJ, Zhu R, et al. Hollow luminescent carbon dots for drug delivery. Carbon. 2013;59:192–9.

    Article  CAS  Google Scholar 

  103. Roy P, Periasamy AP, Lin CY, Her GM, Chiu WJ, Li CL, et al. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale. 2015;7:2504–10.

    Article  CAS  PubMed  Google Scholar 

  104. Wang SJ, Chen ZG, Cole I, Li Q. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon. 2015;82:304–13.

    Article  CAS  Google Scholar 

  105. Ju J, Chen W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem. 2015;87:1903–10.

    Article  CAS  PubMed  Google Scholar 

  106. Wu ZL, Gao MX, Wang TT, Wan XY, Zheng LL, Huang CZ. A general quantitative ph sensor developed with dicyandiamide n-doped high quantum yield graphene quantum dots. Nanoscale. 2014;6:3868–74.

    Article  CAS  PubMed  Google Scholar 

  107. Qu D, Zheng M, Du P, Zhou Y, Zhang LG, Li D, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale. 2013;5:12272–7.

    Article  CAS  PubMed  Google Scholar 

  108. Cheng SH, Weng TM, Lu ML, Tan WC, Chen JY, Chen YF. All carbon-based photodetectors: an eminent integration of graphite quantum dots and two dimensional graphene. Sci Rep UK. 2013;3:2694.

    Article  Google Scholar 

  109. Dong YQ, Li GL, Zhou NN, Wang RX, Chi YW, Chen GN. Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem. 2012;84:8378–82.

    Article  CAS  PubMed  Google Scholar 

  110. Qu D, Sun ZC, Zheng M, Li J, Zhang YQ, Zhang GQ, et al. Three colors emission from S, N co-doped graphene quantum dots for visible light H2 production and bioimaging. Adv Opt Mater. 2015;3:360–7.

    Article  CAS  Google Scholar 

  111. Qu D, Zheng M, Zhang LG, Zhao HF, Xie ZG, Jing XB, et al. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep UK. 2014;4:5294.

    Article  CAS  Google Scholar 

  112. Ju J, Zhang RZ, He SJ, Chen W. Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv. 2014;4:52583–9.

    Article  CAS  Google Scholar 

  113. Umrao S, Jang MH, Oh JH, Kim G, Sahoo S, Cho YH, et al. Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: new platform for enzyme-free detection of hydrogen peroxide. Carbon. 2015;81:514–24.

    Article  CAS  Google Scholar 

  114. Das SK, Luk CM, Martin WE, Tang LB, Kim DY, Lau SP, et al. Size and dopant dependent single particle fluorescence properties of graphene quantum dots. J Phys Chem C. 2015;119:17988–94.

    Article  CAS  Google Scholar 

  115. Tang LB, Ji RB, Li XM, Bai GX, Liu CP, Hao JH, et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano. 2014;8:6312–20.

    Article  CAS  PubMed  Google Scholar 

  116. Tang LB, Ji RB, Li XM, Teng KS, Lau SP. Size-dependent structural and optical characteristics of glucose-derived graphene quantum dots. Part Part Syst Charact. 2013;30:523–31.

    Article  CAS  Google Scholar 

  117. Tang LB, Ji RB, Cao XK, Lin JY, Jiang HX, Li XM, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6:5102–10.

    Article  CAS  PubMed  Google Scholar 

  118. Li XM, Lau SP, Tang LB, Ji RB, Yang PZ. Multicolour light emission from chlorine-doped graphene quantum dots. J Mater Chem C. 2013;1:7308–13.

    Article  CAS  Google Scholar 

  119. Ma CB, Zhu ZT, Wang HX, Huang X, Zhang X, Qi XY, et al. A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale. 2015;7:10162–9.

    Article  CAS  PubMed  Google Scholar 

  120. Ananthanarayanan A, Wang Y, Routh P, Sk MA, Than A, Lin M, et al. Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale. 2015;7:8159–65.

    Article  CAS  PubMed  Google Scholar 

  121. Wu X, Tian F, Wang WX, Chen J, Wu M, Zhao JX. Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C. 2013;1:4676–84.

    Article  CAS  Google Scholar 

  122. Shi WJ, Fan H, Ai SY, Zhu LS. Preparation of fluorescent graphene quantum dots from humic acid for bioimaging application. New J Chem. 2015;39:7054–9.

    Article  CAS  Google Scholar 

  123. Zhou L, Geng JL, Liu B. Graphene quantum dots from polycyclic aromatic hydrocarbon for bioimaging and sensing of Fe3+ and hydrogen peroxide. Part Part Syst Charact. 2013;30:1086–92.

    Article  CAS  Google Scholar 

  124. Wang L, Wang YL, Xu T, Liao HB, Yao CJ, Liu Y, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun. 2014;5:5357.

    Article  CAS  PubMed  Google Scholar 

  125. Yan X, Cui X, Li BS, Li LS. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 2010;10:1869–73.

    Article  CAS  PubMed  Google Scholar 

  126. Yan X, Cui X, Li LS. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc. 2010;132:5944–5.

    Article  CAS  PubMed  Google Scholar 

  127. Mueller ML, Yan X, Dragnea B, Li LS. Slow hot-carrier relaxation in colloidal graphene quantum dots. Nano Lett. 2011;11:56–60.

    Article  CAS  PubMed  Google Scholar 

  128. Gokhale R, Singh P. Blue luminescent graphene quantum dots by photochemical stitching of small aromatic molecules: fluorescent nanoprobes in cellular imaging. Part Part Syst Charact. 2014;31:433–8.

    Article  CAS  Google Scholar 

  129. Yuan XC, Liu ZM, Guo ZY, Ji YH, Jin M, Wang XP. Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res Lett. 2014;9:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jiang F, Chen DQ, Li RM, Wang YC, Zhang GQ, Li SM, et al. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale. 2013;5:1137–42.

    Article  CAS  PubMed  Google Scholar 

  131. Hu CF, Liu YL, Yang YH, Cui JH, Huang ZR, Wang YL, et al. One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B. 2013;1:39–42.

    Article  CAS  PubMed  Google Scholar 

  132. Huang CL, Huang CC, Mai FD, Yen CL, Tzing SH, Hsieh HT, et al. Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. J Mater Chem B. 2015;3:651–64.

    Article  CAS  PubMed  Google Scholar 

  133. Qu D, Zheng M, Li J, Xie ZG, Sun ZC. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci Appl. 2015;4:e364.

    Article  CAS  Google Scholar 

  134. Sun J, Yang SW, Wang ZY, Shen H, Xu T, Sun LT, et al. Ultra-high quantum yield of graphene quantum dots: aromatic-nitrogen doping and photoluminescence mechanism. Part Part Syst Charact. 2015;32:434–40.

    Article  CAS  Google Scholar 

  135. Hai X, Mao QX, Wang WJ, Wang XF, Chen XW, Wang JH. An acid-free microwave approach to prepare highly luminescent boron-doped graphene quantum dots for cell imaging. J Mater Chem B. 2015;3:9109–14.

    Article  CAS  PubMed  Google Scholar 

  136. Ge JC, Lan MH, Zhou BJ, Liu WM, Guo L, Wang H, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014;5:4596.

    Article  CAS  PubMed  Google Scholar 

  137. Zhu SJ, Tang SJ, Zhang JH, Yang B. Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem Commun. 2012;48:4527–39.

    Article  CAS  Google Scholar 

  138. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge LH, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12:844–9.

    Article  CAS  PubMed  Google Scholar 

  139. Kim S, Hwang SW, Kim MK, Shin DY, Shin DH, Kim CO, et al. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano. 2012;6:8203–8.

    Article  CAS  PubMed  Google Scholar 

  140. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.

    Article  CAS  PubMed  Google Scholar 

  141. Zhang RZ, Adsetts JR, Nie YT, Sun XH, Ding ZF. Electrochemiluminescence of nitrogen- and sulfur-doped graphene quantum dots. Carbon. 2018;129:45–53.

    Article  CAS  Google Scholar 

  142. Zhu SJ, Zhang JH, Liu X, Li B, Wang XF, Tang SJ, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2012;2:2717–20.

    Article  CAS  Google Scholar 

  143. Zhang LM, Xing YD, He NY, Zhang Y, Lu ZX, Zhang JP, et al. Preparation of graphene quantum dots for bioimaging application. J Nanosci Nanotechnol. 2012;12:2924–8.

    Article  CAS  PubMed  Google Scholar 

  144. Zhu SJ, Zhang JH, Qiao CY, Tang SJ, Li YF, Yuan WJ, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47:6858–60.

    Article  CAS  Google Scholar 

  145. Zhu SJ, Zhou N, Hao ZY, Maharjan S, Zhao XH, Song YB, et al. Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission. RSC Adv. 2015;5:39399–403.

    Article  CAS  Google Scholar 

  146. Zhang M, Bai LL, Shang WH, Xie WJ, Ma H, Fu YY, et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem. 2012;22:7461–7.

    Article  CAS  Google Scholar 

  147. Kumar V, Singh V, Umrao S, Parashar V, Abraham S, Singh AK, et al. Facile, rapid and upscaled synthesis of green luminescent functional graphene quantum dots for bioimaging. RSC Adv. 2014;4:21101–7.

    Article  CAS  Google Scholar 

  148. Zhu XH, Xiao X, Zuo XX, Liang Y, Nan JM. Hydrothermal preparation of photoluminescent graphene quantum dots characterized excitation-independent emission and its application as a bioimaging reagent. Part Part Syst Charact. 2014;31:801–9.

    Article  CAS  Google Scholar 

  149. Wang XJ, Sun X, Lao J, He H, Cheng TT, Wang MQ, et al. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloid Surf B. 2014;122:638–44.

    Article  CAS  Google Scholar 

  150. Qian ZS, Ma JJ, Shan XY, Shao LX, Zhou J, Chen JR, et al. Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Adv. 2013;3:14571–9.

    Article  CAS  Google Scholar 

  151. Chen S, Hai X, Xia C, Chen XW, Wang JH. Preparation of excitation-independent photoluminescent graphene quantum dots with visible-light excitation/emission for cell imaging. Chem Eur J. 2013;19:15918–23.

    Article  CAS  PubMed  Google Scholar 

  152. Nigam P, Waghmode S, Louis M, Wangnoo S, Chavan P, Sarkar D. Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B. 2014;2:3190–5.

    Article  CAS  PubMed  Google Scholar 

  153. Sun YQ, Wang SQ, Li C, Luo PH, Tao L, Wei Y, et al. Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys Chem Chem Phys. 2013;15:9907–13.

    Article  CAS  PubMed  Google Scholar 

  154. Gan ZX, Wu XL, Zhou GX, Shen JC, Chu PK. Is there real upconversion photoluminescence from graphene quantum dots? Adv Opt Mater. 2013;1:554–8.

    Article  Google Scholar 

  155. Pan DY, Guo L, Zhang JC, Xi C, Xue Q, Huang H, et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem. 2012;22:3314–8.

    Article  CAS  Google Scholar 

  156. Sun HJ, Wu L, Gao N, Ren JS, Qu XG. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl Mater Interfaces. 2013;5:1174–9.

    Article  CAS  PubMed  Google Scholar 

  157. Tan XY, Li YC, Li XH, Zhou SX, Fan LZ, Yang SH. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform. Chem Commun. 2015;51:2544–6.

    Article  CAS  Google Scholar 

  158. Sun HJ, Ji HW, Ju EG, Guan YJ, Ren JS, Qu XG. Synthesis of fluorinated and nonfluorinated graphene quantum dots through a new top-down strategy for long-time cellular imaging. Chem Eur J. 2015;21:3791–7.

    Article  CAS  PubMed  Google Scholar 

  159. Chandra A, Deshpande S, Shinde DB, Pillai VK, Singh N. Mitigating the cytotoxicity of graphene quantum dots and enhancing their applications in bioimaging and drug delivery. ACS Macro Lett. 2014;3:1064–8.

    Article  CAS  PubMed  Google Scholar 

  160. Dong YQ, Chen CQ, Zheng XT, Gao LL, Cui ZM, Yang HB, et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem. 2012;22:8764–6.

    Article  CAS  Google Scholar 

  161. Wu CY, Wang C, Han T, Zhou XJ, Guo SW, Zhang JY. Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv Healthc Mater. 2013;2:1613–9.

    Article  CAS  PubMed  Google Scholar 

  162. Chong Y, Ma YF, Shen H, Tu XL, Zhou X, Xu JY, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35:5041–8.

    Article  CAS  PubMed  Google Scholar 

  163. Zhao WJ, Li YH, Yang S, Chen Y, Zheng J, Liu CH, et al. Target-activated modulation of dual-color and two-photon fluorescence of graphene quantum dots for in vivo imaging of hydrogen peroxide. Anal Chem. 2016;88:4833–40.

    Article  CAS  PubMed  Google Scholar 

  164. Qian J, Wang D, Cai FH, Xi W, Peng L, Zhu ZF, et al. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angew Chem Int Ed. 2012;51:10570–5.

    Article  CAS  Google Scholar 

  165. Abdullah-Al-Nahain, Lee JE, In I, Lee H, Lee KD, Jeong JH, et al. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm. 2013;10:3736–44.

    Article  CAS  PubMed  Google Scholar 

  166. Sreeprasad TS, Rodriguez AA, Colston J, Graham A, Shishkin E, Pallem V, et al. Electron-tunneling modulation in percolating network of graphene quantum dots: fabrication, phenomenological understanding, and humidity/pressure sensing applications. Nano Lett. 2013;13:1757–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC, DG RGPIN-2013-201697 and SPG STPGP-2016-493924), Canada Foundation for Innovation/Ontario Innovation Trust (CFI/OIT, 9040), Premier’s Research Excellence Award (PREA, 2003) and the University of Western Ontario(Western) for financial support to our research. ZD acknowledges the Faculty of Science and Western for a Distinguished Research Professorship (2014–2015) and Faculty Scholar Award (2015–2016). We are grateful to the Electronic Shop and ChemBio store for the quality service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Ding.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Ding, Z. Recent Advances in Graphene Quantum Dots as Bioimaging Probes. J. Anal. Test. 2, 45–60 (2018). https://doi.org/10.1007/s41664-018-0047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-018-0047-7

Keywords

Navigation