Skip to main content

Advertisement

Log in

Ionizing and non-ionizing kerma factors in silicon for China Spallation Neutron Source neutron spectrum

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The quantification of ionizing energy deposition and non-ionizing energy deposition plays a critical role in precision neutron dosimetry and in the separation of the displacement damage effects and ionizing effects induced by neutron radiation on semiconductor devices. In this report, neutrons generated by the newly built China Spallation Neutron Source (CSNS) are simulated by Geant4 in semiconductor material silicon to calculate the ionizing and non-ionizing kerma factors. Furthermore, the integral method is applied to calculate neutron-induced ionizing at the CSNS and non-ionizing kerma factors according to the standard neutron nuclear database and the incident neutron spectrum. In addition, thermoluminescence dosimeters are utilized to measure the ionizing energy deposition and six series of bipolar junction transistors are used to measure the non-ionizing energy deposition based on their neutron damage constants. The calibrated kerma factors that were experimentally measured agreed well with the simulation and integral calculation results. This report describes a complete set of methods and fundamental data for the analysis of neutron-induced radiation effects at the CSNS on silicon-based semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.P. Singh, N.M. Badiger, H.R. Vega-Carrillo, Neutron kerma factors and water equivalence of some tissue substitutes. Appl. Radiat. Isot. 103, 115–119 (2015). https://doi.org/10.1016/j.apradiso.2015.05.014

    Article  Google Scholar 

  2. Z.Z. Liu, J.X. Chen, New calculations of neutron kerma coefficients and dose equivalent. J. Radiol. Prot. 28, 185–193 (2008). https://doi.org/10.1088/0952-4746/28/2/002

    Article  Google Scholar 

  3. W.L. Bendel, Displacement and ionization fractions of fast neutron kerma in TLDs and Si. IEEE Trans. Nucl. Sci. 24(6), 2516–2520 (1977). https://doi.org/10.1109/TNS.1977.4329248

    Article  Google Scholar 

  4. Standard practice for characterizing neutron energy fluence spectra in terms of an equivalent monoenergetic neutron fluence for radiation-hardness testing of electronics. (Annual book of ASTM Standards E722-14, USA, 2007). https://doi.org/10.1520/e0722-14

  5. R.S. Caswell, J.J. Coyne, M.L. Randolph, Kerma factors for neutron energies below 30 MeV. Radiat. Res. 83(2), 217–254 (1980). https://doi.org/10.2307/3575276

    Article  Google Scholar 

  6. J.R. Srour, J.W. Palko, Displacement damage effects in irradiated semiconductor devices. IEEE Trans. Nucl. Sci. 60(3), 1740–1766 (2013). https://doi.org/10.1109/TNS.2013.2261316

    Article  Google Scholar 

  7. J.R. Srour, C.J. Marshall, P.W. Marshall, Review of displacement damage effects in silicon devices. IEEE Trans. Nucl. Sci. 50(3), 653–670 (2003). https://doi.org/10.1109/TNS.2003.813197

    Article  Google Scholar 

  8. J.R. Schwank, M.R. Shaneyfelt, D.M. Fleetwood, J.A. Felix, P.E. Doddet, P. Paillet, V.F. Cavroisal, Radiation effects in MOS oxides. IEEE Trans. Nucl. Sci. 55(4), 1833–1853 (2008). https://doi.org/10.1109/TNS.2008.2001040

    Article  Google Scholar 

  9. T.R. Oldham, F.B. McLean, Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 50(3), 483–499 (2003). https://doi.org/10.1109/TNS.2003.812927

    Article  Google Scholar 

  10. D. Lambert, J. Baggio, V. Ferlet-Cavrois, O. Flament, F. Saigne, B. Sagnes, N. Buard, T. Carriere, Neutron-induced SEU in bulk SRAMs in terrestrial environment: simulations and experiments. IEEE Trans. Nucl. Sci. 51(6), 3435–3441 (2004). https://doi.org/10.1109/TNS.2004.839133

    Article  Google Scholar 

  11. F. Miller, C. Weulersse, T. Carriere, N. Guibbaud, S. Morand, R. Gaillard, Investigation of 14 MeV neutron capabilities for SEU hardness evaluation. IEEE Trans. Nucl. Sci. 60(4), 2789–2796 (2013). https://doi.org/10.1109/TNS.2013.2241078

    Article  Google Scholar 

  12. L.X. Chen, X.B. Tang, X.B. Jiang, D. Chen, Z.M. Zhao, Theoretical study on boiling heat transfer in the Xi’an pulsed reactor. Sci. China Technol. Sci. 56(1), 137–142 (2013). https://doi.org/10.1007/s11431-012-5042-z

    Article  Google Scholar 

  13. L.Y. Zhang, H.T. Jing, J.Y. Tang, X.Q. Wang, Design and simulations of the neutron dump for the back-streaming white neutron beam at CSNS. Radiat. Phys. Chem. 127, 133–139 (2016). https://doi.org/10.1016/j.radphyschem.2016.06.023

    Article  Google Scholar 

  14. J.B. Yu, J.X. Chen, L. Kang, J.F. Wu, J.Q. Zou, Thermal analysis and tests of W/Cu brazing for primary collimator scraper in CSNS/RCS. Nucl. Sci. Tech. 28, 46 (2017). https://doi.org/10.1007/s41365-017-0208-9

    Article  Google Scholar 

  15. L.Y. Zhang, H.T. Jing, J.Y. Tang, Q. Li, X.C. Ruan, J. Ren, C.J. Ning, Y.J. Yu, Z.X. Tan, P.C. Wang, Y.C. He, X.Q. Wang, Design of back-streaming white neutron beam line at CSNS. Appl. Radiat. Isot. 132, 212–221 (2018). https://doi.org/10.1016/j.apradiso.2017.11.013

    Article  Google Scholar 

  16. S. Agostinelli, Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 506, 50–303 (2003). https://doi.org/10.1016/s0168-9002(03)01368-8

    Article  Google Scholar 

  17. S. Tripathi, C. Upadhyay, C.P. Nagaraj, K. Devan, A. Venkatesan, K. Madhusoodanan, Investigation of enhancement in planar fast neutron detector efficiency with stacked structure using Geant4. Nucl. Sci. Tech. 28, 154 (2017). https://doi.org/10.1007/s41365-017-0315-7

    Article  Google Scholar 

  18. P. Truscott, C. Dyer, A. Frydland et al., Neutron energy-deposition spectra measurements, and comparisons with Geant4 predictions. IEEE Trans. Nucl. Sci. 53, 1883–1889 (2006). https://doi.org/10.1109/TNS.2006.880936

    Article  Google Scholar 

  19. B. Obryk, R. Villari, P. Batistoni, A. Colangeli, P. De Felice, N. Fonnesu, M. Kłosowski, S. Loreti, K. Malik, J. Nash, M. Pillon, M. Pimpinella, L. Quintieri, J.E.T. Contributors, TLD calibration for neutron fluence measurements at JET fusion facility. Nucl. Instrum. Methods Phys. Res., Sect. A 904, 202–213 (2018). https://doi.org/10.1016/j.nima.2018.07.050

    Article  Google Scholar 

  20. J.R. Lei, Y.G. Yuan, L. Zhao, M.Z. Zhao, G.X. Gui, Investigations of the photon fluences in various n + γ mixed fields in the fast neutron reactor. Acta Physica Sinica 52(1), 53–57 (2003). https://doi.org/10.7498/aps.52.53

    Article  Google Scholar 

  21. H.J. Barnaby, R.D. Schrimpf, K.F. Galloway, X. Li, J. Yang, C. Liu, Displacement damage in bipolar junction transistors: beyond Messenger–Spratt. IEEE Trans. Nucl. Sci. 64(1), 149–155 (2017). https://doi.org/10.1109/TNS.2016.2615628

    Article  Google Scholar 

  22. G.C. Messenger, M.S. Ash, The Effects of Radiation on Electronic Systems (Van Nostrand, New York, 1986). https://doi.org/10.1007/978-94-017-5355-5

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere appreciation to the collaborators for their contributions, particularly Jing-Yu Tang and Zhi-Xin Tan at CSNS and Guang-Ning Zhu and Qiang Zhang at XAPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Jin.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11690040 and 11690043) and the Foundation of State Key Laboratory of China (Nos. SKLIPR1801Z and 6142802180304).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, XM., Liu, Y., Su, CL. et al. Ionizing and non-ionizing kerma factors in silicon for China Spallation Neutron Source neutron spectrum. NUCL SCI TECH 30, 143 (2019). https://doi.org/10.1007/s41365-019-0664-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0664-5

Keywords

Navigation