Skip to main content

Advertisement

Log in

A review of geometric calibration for different 3-D X-ray imaging systems

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A precise knowledge of geometry is always pivotal to a 3-D X-ray imaging system, such as computed tomography (CT), digital X-ray tomosynthesis, and computed laminography. To get an accurate and reliable reconstruction image, exact knowledge of geometry is indispensable. Nowadays, geometric calibration has become a necessary step after completing CT system installation. Various geometric calibration methods have been reported with the fast development of 3-D X-ray imaging techniques. In these methods, different measuring methods, calibration phantoms or markers, and calculation algorithms were involved with their respective advantages and disadvantages. This paper reviews the history and current state of geometric calibration methods for different 3-D X-ray imaging systems. Various calibration algorithms are presented and summarized, followed by our discussion and outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Li, Z.Q. Chen, Y.X. Xing et al., A general exact method for synthesizing parallel-beam projections from cone-beam projections via filtered backprojection. Phys. Med. Biol. 51, 5643–5654 (2006). doi:10.1088/0031-9155/51/21/017

    Article  Google Scholar 

  2. Z.Q. Chen, X. Jin, L. Li, Ge. Wang, A limited-angle CT reconstruction method based on anisotropic TV minimization. Phys. Med. Biol. 58, 2119–2141 (2013). doi:10.1088/0031-9155/58/7/2119

    Article  Google Scholar 

  3. X. Wang, J.G. Mainprize, M.P. Kempston, et al. Digital breast tomosynthesis geometry calibration//Medical imaging. Int. Soc. Opt. Photonics 65103B (2007). doi:10.1117/12.698714

  4. L. Helfen, T. Baumbach, P. Mikulík et al., High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography. Appl. Phys. Lett. 86, 071915 (2005). doi:10.1063/1.1854735

    Article  Google Scholar 

  5. S. Hoppe, F. Noo, F. Dennerlein et al., Geometric calibration of the circle-plus-arc trajectory. Phys. Med. Biol. 52, 6943–6960 (2007). doi:10.1088/0031-9155/52/23/012

    Article  Google Scholar 

  6. G.T. Gullberg, B.M.W. Tsui, C.R. Crawford et al., Estimation of geometrical parameters for fan beam tomography. Phys. Med. Biol. 32, 1581–1594 (1987). doi:10.1088/0031-9155/32/12/005

    Article  Google Scholar 

  7. G.T. Gullberg, B.M.W. Tsui, C.R. Crawford et al., Estimation of geometrical parameters and collimator evaluation for cone beam tomography. Med. Phys. 17, 264–272 (1990). doi:10.1118/1.596505

    Article  Google Scholar 

  8. L. Li, Z.Q. Chen, L. Zhang, Y.X. Xing, K.J. Kang, A cone-beam tomography system with a reduced size planar detector: a backprojection-filtration reconstruction algorithm as well as numerical and practical experiments. J Appl Radiat Isot. 65, 1041–1047 (2007). doi:10.1016/j.apradiso.2007.01.023

    Article  Google Scholar 

  9. Y. Cho, D.J. Moseley, J.H. Siewerdsen, D.A. Jaffray, Accurate technique for complete geometric calibration of cone-beam computed tomography systems. Med. Phys. 32, 968–983 (2005). doi:10.1118/1.1869652

    Article  Google Scholar 

  10. Y. Sun, Y. Hou, F. Zhao, J. Hu, A calibration method for misaligned scanner geometry in cone-beam computed tomography. NDT E Int. 39, 499–513 (2006). doi:10.1016/j.ndteint.2006.03.002

    Article  Google Scholar 

  11. C. Mennessier, R. Clackdoyle. Automated geometric calibration and reconstruction in circular cone-beam tomography[C]//Nuclear Science Symposium Conference Record, 2008. NSS’08. IEEE. IEEE, 2008: 5081–5085. doi:10.1109/NSSMIC.2008.4774380

  12. K. Yang, A.L.C. Kwan, D.F. Miller, J.M. Boone, A geometric calibration method for cone beam CT systems. Med. Phys. 33, 1695–1706 (2006). doi:10.1118/1.2198187

    Article  Google Scholar 

  13. F. Noo, R. Clackdoyle, C. Mennessier, T.A. White, T.J. Roney, Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography. Phys. Med. Biol. 45, 3489–3508 (2000). doi:10.1088/0031-9155/45/11/327

    Article  Google Scholar 

  14. L. von Smekal, M. Kachelrieß, E. Stepina, Willi A. Kalender. Geometric misalignment and calibration in cone-beam tomography. Med. Phys. 31, 3242–3266 (2004). doi:10.1118/1.1803792

    Article  Google Scholar 

  15. D. Beque, J. Nuyts, P. Suetens, G. Bormans, 2005 Optimization of geometrical calibration in pinhole spect. IEEE Trans. Med. Imaging 24, 180–190 (2005). doi:10.1109/TMI.2004.839367

    Article  Google Scholar 

  16. G. Chen, J. Zambelli, B. Nett, M. Supanich et al., Design and development of C-arm based cone-beam CT for image-guided interventions: initial results Proc. SPIE 6142, 336–347 (2006). doi:10.1117/12.653197

    Google Scholar 

  17. G. Strubel, R. Clackdoyle, C. Mennessier, F. Noo, 2005 Analytic calibration of cone-beam scanners. IEEE Nucl. Sci. Symp. Conf. Rec. 5, 2731–2735 (2005). doi:10.1109/NSSMIC.2005.1596901

    Article  Google Scholar 

  18. N.K. Strobel, B. Heigl, T.M. Brunner et al., Improving 3D image quality of x-ray C-arm imaging systems by using properly designed pose determination systems for calibrating the projection geometry[C]//Medical Imaging. Int. Soc. Opt. Photonics 2003, 943–954 (2003). doi:10.1117/12.479945

    Google Scholar 

  19. D. Panetta, N. Belcari, A. Del Guerra et al., An optimization-based method for geometrical calibration in cone-beam CT without dedicated phantoms. Phys. Med. Biol. 53, 3841–3861 (2008). doi:10.1088/0031-9155/53/14/009

    Article  Google Scholar 

  20. A. Ladikos, W. Wein. Geometric calibration using bundle adjustment for cone-beam computed tomography devices[C]//SPIE medical imaging. Int. Soc. Opt. Photonics 83132T (2012). doi:10.1117/12.906238

  21. L. Li, Z. Chen, Z. Zhao et al., X-ray digital intra-oral tomosynthesis for quasi-three-dimensional imaging: system, reconstruction algorithm, and experiments. Opt. Eng. 52, 013201 (2013). doi:10.1117/1.OE.52.1.013201

    Article  Google Scholar 

  22. L.T. Niklason, B.T. Christian, L.E. Niklason et al., Digital tomosynthesis in breast imaging. Radiology 205, 399–406 (1997)

    Article  Google Scholar 

  23. J.T. Dobbins III, D.J. Godfrey, Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys. Med. Biol. 48, R65 (2003). doi:10.1088/0031-9155/48/19/R01

    Article  Google Scholar 

  24. P.R. Bakic, P. Ringer, J. Kuo, et al. Analysis of Geometric Accuracy in Digital Breast Tomosynthesis Reconstruction[M]//Digital Mammography (Springer, Berlin, 2010), pp. 62–69. doi:10.1007/978-3-642-13666-5_9

  25. Z. Kolitsi, G. Panayiotakis, V. Anastassopoulos et al., A multiple projection method for digital tomosynthesis. Med. Phys. 19, 1045–1050 (1992). doi:10.1118/1.596822

    Article  Google Scholar 

  26. Y.J. Roh, K.W. Koh, H. Cho, et al. Calibration of x-ray digital tomosynthesis system including the compensation for image distortion[C]//Photonics East (ISAM, VVDC, IEMB). Int. Soc. Opt. Photonics 248–259 (1998). doi:10.1117/12.326966

  27. X. Wang, J.G. Mainprize, M.P. Kempston, et al. Digital breast tomosynthesis geometry calibration[C]//medical imaging. Int. Soc. Opt. Photonics 65103B (2007). doi:10.1117/12.698714

  28. D.J. Godfrey, F.E. Yin, M. Oldham et al., Digital tomosynthesis with an on-board kilovoltage imaging device[J]. Int. J, Radiat. Oncol. 65, 8–15 (2006). doi:10.1016/j.ijrobp.2006.01.025

    Article  Google Scholar 

  29. H. Miao, X. Wu, H. Zhao et al., A phantom-based calibration method for digital x-ray tomosynthesis. J. X-Ray Sci. Technol. 20, 17–29 (2012). doi:10.3233/XST-2012-0316

    Google Scholar 

  30. B. Claus, B. Opsahl-Ong, M. Yavuz. Method, apparatus, and medium for calibration of tomosynthesis system geometry using fiducial markers with non-determined position [P]. 2003-6-25

  31. M. Maisl, F. Porsch, C. Schorr. Computed laminography for X-ray inspection of lightweight constructions[C]//2nd International Symposium on NDT in Aerospace. 2010: M0

  32. J.M. Que, D.Q. Cao, W. Zhao et al., Computed laminography and reconstruction algorithm. Chin. Phys. C. 36, 777–783 (2012). doi:10.1088/1674-1137/36/8/017

    Article  Google Scholar 

  33. B. Eppler. Method and apparatus for calibrating an x-ray laminography imaging system: U.S. Patent 6,819,739[P]. 2004-11-16

  34. M. Yang, J. Zhang, M. Yuan et al., Calibration method of projection coordinate system for X-ray cone-beam laminography scanning system. NDT E Int. 52, 16–22 (2012). doi:10.1016/j.ndteint.2012.08.005

    Article  Google Scholar 

  35. N. Robert, K.N. Watt, X. Wang et al., The geometric calibration of cone–beam systems with arbitrary geometry. Phys. Med. Biol. 54, 7239–7261 (2009). doi:10.1088/0031-9155/54/24/001

    Article  Google Scholar 

  36. R.L. Webber, R.A. Horton, D.A. Tyndall et al., Tuned-aperture computed tomography (TACT™): theory and application for three-dimensional dento-alveolar imaging. Dentomaxillofac. Radiol. 26, 53–62 (1997). doi:10.1038/sj.dmfr.4600201

    Article  Google Scholar 

  37. K. Yamamoto, A.G. Farman, R.L. Webber et al., Effects of projection geometry and number of projections on accuracy of depth discrimination with tuned-aperture computed tomography (TACT) in dentistry. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 86, 126–130 (1998). doi:10.1016/S1079-2104(98)90162-7

    Article  Google Scholar 

  38. R.L. Webber, J.K. Messura, An in vivo comparison of diagnostic information obtained from aperture computed tomography and conventional dental radiographic imaging modalities. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 88, 239–247 (1999). doi:10.1016/S1079-2104(99)70122-8

    Article  Google Scholar 

  39. K. Yamamoto, R.L. Webber, R.A. Horton et al., Effect of number of projections on accuracy of depth discrimination using tuned-aperture computed tomography for 3-dimensional dentoalveolar imaging of low-contrast details. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 88, 100–105 (1999). doi:10.1016/S1079-2104(99)70201-5

    Article  Google Scholar 

  40. M.K. Nair, U.D.P. Nair, H. Gröndahl et al., Detection of artificially induced vertical radicular fractures using tuned aperture computed tomography. Eur. J. Oral Sci. 109, 375–379 (2001). doi:10.1034/j.1600-0722.2001.00085.x

    Article  Google Scholar 

  41. A.G. Farman, J.P. Scheetz, P.D. Eleazer et al., Tuned-aperture computed tomography accuracy in tomosynthetic assessment for dental procedures. Int. Congr. Ser. 1230, 695–699 (2001). doi:10.1016/S0531-5131(01)00113-3

    Article  Google Scholar 

  42. D.J. Barton, S.J. Clark, P.D. Eleazer et al., Tuned-aperture computed tomography versus parallax analog and digital radiographic images in detecting second mesiobuccal canals in maxillary first molars. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 96, 223–228 (2003). doi:10.1016/S1079-2104(03)00061-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Li.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 81427803 and 61571256) and the Beijing Excellent Talents Training Foundation (No. 2013D009004000004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, L. & Chen, ZQ. A review of geometric calibration for different 3-D X-ray imaging systems. NUCL SCI TECH 27, 76 (2016). https://doi.org/10.1007/s41365-016-0073-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0073-y

Keywords

Navigation