Skip to main content

Practical Basics and Applications of X-ray Tomography

  • Chapter
  • First Online:
Advanced X-ray Imaging of Electrochemical Energy Materials and Devices
  • 739 Accesses

Abstract

X-ray tomography is one of the major techniques for 3D/4D imaging of energy materials and devices. This chapter provides a general review of X-ray tomography. We start from the origin of the medical CT to explain the fundamental principle of tomography. The mathematical theories are discussed. Following that, three major strategies of tomographic reconstruction are introduced with the example algorithms. The implementations of these algorithms in open-source software are listed for the practice. In the end, we make an overview of the setup of TXM for synchrotron X-ray tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hounsfield, G.N.: Computerized transverse axial scanning (tomography): Part 1 Description of system. Br. J. Radiol. 46, 1016–1022 (1973)

    Article  CAS  Google Scholar 

  2. Wood, V.: X-ray tomography for battery research and development. Nat. Rev. Mater. 3, 293–295 (2018)

    Article  Google Scholar 

  3. Yu, Z., Wang, J., Liu, Y.: High-dimensional and high-resolution x-ray tomography for energy materials science. MRS Bull. 45, 283–289 (2020)

    Article  Google Scholar 

  4. Wang, J., Chen-Wiegarta, Y.C.K., Wang, J.: In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging. Chem. Commun. 49, 6480–6482 (2013)

    Article  CAS  Google Scholar 

  5. Eastwood, D.S., et al.: The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes. Nucl. Instruments Methods Phys. Res. Sect. B 324, 118–123 (2014)

    Google Scholar 

  6. Jensen, K.M.Ø., et al.: X-ray diffraction computed tomography for structural analysis of electrode materials in batteries. J. Electrochem. Soc. 162, A1310–A1314 (2015)

    Article  CAS  Google Scholar 

  7. Meirer, F., et al.: Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Radiat. 18, 773–781 (2011)

    Article  CAS  Google Scholar 

  8. Yang, F., et al.: Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling. Nano Lett. 14, 4334–4341 (2014)

    Article  CAS  Google Scholar 

  9. Yu, Y.S., et al.: Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography. Nat. Commun. 9, 1–7 (2018)

    Article  Google Scholar 

  10. Pan, X., Sidky, E.Y., Vannier, M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Prob. 25, 1230009 (2009)

    Article  Google Scholar 

  11. Herman, G.T., Lent, A., Rowland, S.W.: ART: mathematics and applications. A report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques. J. Theor. Biol. 42, 1–32 (1973)

    Google Scholar 

  12. Andersen, A.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason. Imaging 6, 81–94 (1984)

    Article  CAS  Google Scholar 

  13. Nuyts, J., Michel, C., Dupont, P.: Maximum-likelihood expectation-maximization reconstruction of sinograms with arbitrary noise distribution using NEC-transformations. IEEE Trans. Med. Imaging 20, 365–375 (2001)

    Article  CAS  Google Scholar 

  14. Zhu, W., et al.: Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method. J. Opt. Soc. Am. A 14, 799 (1997)

    Article  CAS  Google Scholar 

  15. Ritschl, L., Bergner, F., Fleischmann, C., Kachelrieß, M.: Improved total variation-based CT image reconstruction applied to clinical data. Phys. Med. Biol. 56, 1545–1561 (2011)

    Article  Google Scholar 

  16. Yang, X., van Ommen, J.R., Mudde, R.F.: Comparison of genetic algorithm and algebraic reconstruction for X-ray tomography in bubbling fluidized beds. Powder Technol. 253, 626–637 (2014)

    Article  CAS  Google Scholar 

  17. Goodfellow, I. et al.: Generative adversarial networks. Commun. ACM 63, 139–144 (2020)

    Google Scholar 

  18. Yang, X., et al.: Tomographic reconstruction with a generative adversarial network. J. Synchrotron Radiat. 27, 486–493 (2020)

    Google Scholar 

  19. Gürsoy, D., De Carlo, F., Xiao, X., Jacobsen, C.: TomoPy: a framework for the analysis of synchrotron tomographic data. J. Synchrotron Radiat. 21, 1188–1193 (2014)

    Article  Google Scholar 

  20. van Aarle, W., et al.: The ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157, 35–47 (2015)

    Article  Google Scholar 

  21. Pelt, D.M., et al.: Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data. J. Synchrotron Radiat. 23, 842–849 (2016)

    Article  CAS  Google Scholar 

  22. Grodzins, L.: Optimum energies for x-ray transmission tomography of small samples: Applications of synchrotron radiation to computerized tomography I. Nucl. Instruments Methods Phys. Res. 206, 541–545 (1983)

    Google Scholar 

  23. Hubbell, J., Seltzer, S.: Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html. (1995)

  24. Henke, B., Gullikson, E., Davis, J.: X-Ray Interactions: Photoabsorption, Scattering, Transmission and Reflection E = 50-30,000 eV, Z = 1-92. Atomic Data and Nuclear Data Tables, 54(2). LBNL Report #: LBL-33908. Retrieved from https://escholarship.org/uc/item/9wh2w9rg (1993)

  25. Pietsch, P., Wood, V.: X-ray tomography for lithium ion battery research: a practical guide. Annu. Rev. Mater. Res. 47, 451–479 (2017)

    Article  CAS  Google Scholar 

  26. De Andrade, V., et al.: A new transmission x-ray microscope for in-situ nano-tomography at the APS. SPIE 9967, 11 (2016)

    Google Scholar 

  27. Azevedo, S.G., Schneberk, D.J., Fitch, J.P., Martz, H.E.: Calculation of the rotational centers in computed tomography sinograms. IEEE Trans. Nucl. Sci. 37, 1525–1540 (1990)

    Article  Google Scholar 

  28. Yang, Y., et al.: Registration of the rotation axis in X-ray tomography. J. Synchrotron Radiat. 22, 452–457 (2015)

    Google Scholar 

  29. Yang, X., De Carlo, F., Phatak, C., Gürsoy, D.: A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography. J. Synchrotron Radiat. 24, 469–475 (2017)

    Article  Google Scholar 

  30. Guckenberger, R.: Determination of a common origin in the micrographs of tilt series in three-dimensional electron microscopy. Ultramicroscopy 9, 167–173 (1982)

    Article  Google Scholar 

  31. Hayashida, M., Terauchi, S., Fujimoto, T.: Automatic coarse-alignment for TEM tilt series of rod-shaped specimens collected with a full angular range. Micron 41, 540–545 (2010)

    Article  Google Scholar 

  32. Guizar-Sicairos, M., et al.: Phase tomography from x-ray coherent diffractive imaging projections. Opt. Express 19, 21345 (2011)

    Article  Google Scholar 

  33. Gürsoy, D., et al.: Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection. Sci. Rep. 7, 1–12 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, X. (2021). Practical Basics and Applications of X-ray Tomography. In: Wang, J. (eds) Advanced X-ray Imaging of Electrochemical Energy Materials and Devices. Springer, Singapore. https://doi.org/10.1007/978-981-16-5328-5_2

Download citation

Publish with us

Policies and ethics