Skip to main content
Log in

Channel planform dynamics using earth observations across Rel river, western India: A synergetic approach

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

The complex channel planforms dynamics of river systems have attracted a lot of attention worldwide because of the tremendous effects that morphological changes have on nearby ecosystems and human populations. The present research aims at understanding intricate changes in the Rel river's channel as well as the erosion and deposition taking place over the past 48 years (1975–2023) through the application of Geographic Information System (GIS) and remote sensing. Spatial data within GIS were scrutinized to identify alterations in sinuosity, centreline migration, and large-scale dynamics of the river. A synergetic approach employing earth observation data, topographic mapping, and GIS processing, the research underscores the pivotal role of geospatial analysis in providing actionable spatiotemporal variations insights in the length of the river varying from 49.61 to 71 km, sinuosity index ranging from 1.25 to 1.79 and the maximum erosion and deposition were observed in year 1990 and 2015, respectively. This study's relevance extends to the broader context of river management and sustainable development, emphasizing the need for a holistic understanding of river systems to address contemporary challenges. In essence, the research contributes valuable insights for both scientific understanding and practical applications in the field of river dynamics, flood, drought, and environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agnihotri, A. K., Ohri, A., & Mishra, S. (2020). Channel planform dynamics of lower Ramganga River, Ganga basin, GIS and remote sensing analyses. Geocarto International, 35(9), 934–953. https://doi.org/10.1080/10106049.2018.1552323

    Article  ADS  Google Scholar 

  2. Deb, M., & Ferreira, C. (2015). Planform channel dynamics and bank migration hazard assessment of a highly sinuous river in the north-eastern zone of Bangladesh. Environmental Earth Sciences, 73(10), 6613–6623. https://doi.org/10.1007/s12665-014-3884-3

    Article  ADS  Google Scholar 

  3. Jodhani, K. H., Patel, D., & Madhavan, N. (2023). A review on analysis of flood modelling using different numerical models. Materials Today: Proceedings, 80, 3867–3876. https://doi.org/10.1016/j.matpr.2021.07.405

    Article  Google Scholar 

  4. Heitmuller, F. T. (2014). Channel adjustments to historical disturbances along the lower Brazos and Sabine Rivers, south-central USA. Geomorphology, 204, 382–398. https://doi.org/10.1016/j.geomorph.2013.08.020

    Article  ADS  Google Scholar 

  5. Gond, S., Gupta, N., Patel, J., & Dikshit, P. K. S. (2023). Spatiotemporal evaluation of drought characteristics based on standard drought indices at various timescales over Uttar Pradesh, Indai. Environmental Monitoring and Assessment, 195(3), 439. https://doi.org/10.1007/s10661-023-10988-2

    Article  CAS  PubMed  Google Scholar 

  6. Kalantar, B., Ameen, M. H., Jumaah, H. J., Jumaah, S. J., & Halin, A. A. (2020). Zab River (IRAQ) sinuosity and meandering analysis based on the remote sensing data. In International archives of the photogrammetry, remote sensing and spatial information sciences—ISPRS Archives (Vol. 43, pp. 91–95). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-91-2020.

  7. Gupta, S. K., Gupta, N., & Singh, V. P. (2021). Variable-sized cluster analysis for 3D pattern characterization of trends in precipitation and change-point detection. Journal of Hydrologic Engineering. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002010

    Article  Google Scholar 

  8. Nath, A., Koley, B., Choudhury, T., Saraswati, S., & Um, J.-S. (2023). Coastal vulnerability differentiated according to geospatial quartiles method: Rasulpur to Subarnarekha estuary, east coast of India. Spatial Information Research. https://doi.org/10.1007/s41324-023-00554-w

    Article  Google Scholar 

  9. Jodhani, K., Bansal, P., & Jain, P. (2021). Shoreline change and rate analysis of Gulf of Khambhat using satellite images (pp. 151–170). https://doi.org/10.1007/978-981-16-1303-6_12.

  10. Sapkale, J. B., Kadam, Y. U., Jadhav, I. A., & Kamble, S. S. (2016). River in planform and variation in sinuosity index : A study of Dhamni River, Kolhapur (Maharashtra), India. International Journal of Scientific & Engineering Research, 7(2). Retrieved from http://www.ijser.org.

  11. Adib, A. (2022). Effects of the Karkheh Dam construction on haze generation due to geomorphological changes in the Khuzestan Province, Southwest Iran. Water Supply, 22(2), 2338–2350. https://doi.org/10.2166/ws.2021.376

    Article  MathSciNet  Google Scholar 

  12. Han, B., & Endreny, T. A. (2014). Detailed river stage mapping and head gradient analysis during meander cutoff in a laboratory river. Water Resources Research, 50(2), 1689–1703. https://doi.org/10.1002/2013WR013580

    Article  ADS  Google Scholar 

  13. Rathore, V. K. S., Verma, P. K., Singh, A. K., Patel, A., Singh, M. M., Bhatt, S. C., & Singh, S. K. (2023). Channel dynamics of a middle reach of Rapti River, Eastern Indo-Gangetic Plain, India. Journal of the Geological Society of India, 99(7), 995–1005. https://doi.org/10.1007/s12594-023-2420-z

    Article  Google Scholar 

  14. Durlević, U., Novković, I., Carević, I., Valjarević, D., Marjanović, A., Batoćanin, N., Krstić, F., Stojanović, L., & Valjarević, A. (2022). Sanitary landfill site selection using GIS-based on a fuzzy multi-criteria evaluation technique: A case study of the City of Kraljevo, Serbia. Environmental Science and Pollution Research, 30(13), 37961–37980. https://doi.org/10.1007/s11356-022-24884-8

    Article  PubMed  Google Scholar 

  15. Valjarević, A., Algarni, S., Morar, C., Grama, V., Stupariu, M., Tiba, A., & Lukić, T. (2023). The coastal fog and ecological balance for plants in the Jizan region, Saudi Arabia. Saudi Journal of Biological Sciences, 30(1), 103494. https://doi.org/10.1016/j.sjbs.2022.103494

    Article  PubMed  Google Scholar 

  16. Ondruch, J., & Máčka, Z. (2015). Response of lateral channel dynamics of a lowland meandering river to engineering-derived adjustments—An example of the Morava River (Czech Republic). Open Geosciences, 7(1), 588–605. https://doi.org/10.1515/geo-2015-0047

    Article  Google Scholar 

  17. Gupta, L. K., Pandey, M., Raj, P. A., & Shukla, A. K. (2023). Fine sediment intrusion and its consequences for river ecosystems: A review. Journal of Hazardous, Toxic, and Radioactive Waste. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000729

    Article  Google Scholar 

  18. Ghosh, A., Roy, M. B., & Roy, P. K. (2020). Estimation and prediction of the oscillation pattern of meandering geometry in a sub-catchment basin of Bhagirathi-Hooghly river, West Bengal, India. SN Applied Sciences. https://doi.org/10.1007/s42452-020-03275-z

    Article  Google Scholar 

  19. Hasanuzzaman, M., Mandal, M. H., & Mandal, S. (2022). Integrating geospatial techniques and field survey to assess the changing nature of meander movements and meander geometry of Raidak-I River in the Himalayan foothills, West Bengal. Bulletin of Geography, Physical Geography Series. https://doi.org/10.12775/bgeo-2022-0001

    Article  Google Scholar 

  20. Gupta, N., Banerjee, A., & Gupta, S. K. (2021). Spatio-temporal trend analysis of climatic variables over Jharkhand, India. Earth Systems and Environment, 5(1), 71–86. https://doi.org/10.1007/s41748-021-00204-x

    Article  ADS  Google Scholar 

  21. Aredah, A. S., Ertugrul, O. F., Sattar, A. A., Bonakdari, H., & Gharabaghi, B. (2022). Extreme learning machine model for assessment of stream health using the qualitative habitat evaluation index. Water Supply, 22(5), 5355–5375. https://doi.org/10.2166/ws.2022.166

    Article  Google Scholar 

  22. Jodhani, K. H., Jodhani, K. H., Patel, D., & Madhavan, N. (2023). Land use land cover classification for REL river using machine learning techniques. In 2023 International conference on IoT, communication and automation technology (ICICAT) (pp. 1–3). IEEE. https://doi.org/10.1109/ICICAT57735.2023.10263663.

  23. Ghosh, S., & Mistri, B. (2012). Hydrogeomorphic significance of sinuosity index in relation to river instability: A case study of Damodar River, West Bengal, India. International Journal of Advances in Earth Sciences, 1(2), 49–57.

    Google Scholar 

  24. Ajaykumar, B. N., & Gopinath, G. (2018). Geospatial techniques for the analysis of hypsometric parameters of a humid tropical river basin, South Western Ghats, India. Carpathian Journal of Earth and Environmental Sciences, 13(2), 465–476. https://doi.org/10.26471/CJEES/2018/013/040

    Article  Google Scholar 

  25. Rudra, K. (2010). Dynamics of the Ganga in West Bengal, India (1764–2007): Implications for science-policy interaction. Quaternary International, 227(2), 161–169. https://doi.org/10.1016/j.quaint.2009.10.043

    Article  ADS  Google Scholar 

  26. Rudra, K. (2014). Changing river courses in the western part of the Ganga-Brahmaputra delta. Geomorphology, 227, 87–100. https://doi.org/10.1016/j.geomorph.2014.05.013

    Article  ADS  Google Scholar 

  27. Jodhani, K. H., Patel, D., Madhavan, N., & Singh, S. K. (2023). Soil erosion assessment by RUSLE, Google Earth Engine, and geospatial techniques over Rel River Watershed, Gujarat, India. Water Conservation Science and Engineering, 8(1), 49. https://doi.org/10.1007/s41101-023-00223-x

    Article  Google Scholar 

  28. Saeedrashed, Y., & Guven, A. (2013). Estimation of geomorphological parameters of lower Zab river-basin by using GIS-based remotely sensed image. Water Resources Management, 27(1), 209–219. https://doi.org/10.1007/s11269-012-0179-x

    Article  Google Scholar 

  29. Debnath, J., Meraj, G., Pan, N. D., Chand, K., Debbarma, S., Sahariah, D., Gualtieri, C., Kanga, S., Singh, S. K., Farooq, M., Sahu, N., & Kumar, P. (2022). Integrated remote sensing and field-based approach to assess the temporal evolution and future projection of meanders: A case study on River Manu in North-Eastern India. PLoS ONE. https://doi.org/10.1371/journal.pone.0271190

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gond, S., Gupta, N., Dikshit, P. K. S., & Patel, J. (2023). Assessment of drought variability using SPEI under observed and projected climate scenarios over Uttar Pradesh, India. Physics and Chemistry of the Earth, Parts A/B/C, 131, 103440. https://doi.org/10.1016/j.pce.2023.103440

    Article  Google Scholar 

  31. Bastawesy, M. E., Gabr, S., & White, K. (2013). Hydrology and geomorphology of the Upper White Nile lakes and their relevance for water resources management in the Nile basin. Hydrological Processes, 27(2), 196–205. https://doi.org/10.1002/hyp.9216

    Article  ADS  Google Scholar 

  32. Bhagat, S., & Prasad, P. R. C. (2023). Assessing the impact of spatio-temporal land use and land cover changes on land surface temperature, with a major emphasis on mining activities in the state of Chhattisgarh, India. Spatial Information Research. https://doi.org/10.1007/s41324-023-00563-9

    Article  Google Scholar 

  33. Pinheiro, G., Raj, A., Minz, S., Choudhury, T., & Um, J.-S. (2023). Inundation extend mapping for multi-temporal SAR using automatic thresholding and change detection: A case study on Kosi river of India. Spatial Information Research. https://doi.org/10.1007/s41324-023-00555-9

    Article  Google Scholar 

  34. Mandarino, A., Pepe, G., Maerker, M., Cevasco, A., & Brandolini, P. (2020). Short-term GIS analysis for the assessment of the recent active-channel planform adjustments in a widening, highly altered river: The Scrivia river, Italy. Water (Switzerland). https://doi.org/10.3390/w12020514

    Article  Google Scholar 

  35. Parkash, S., Kaur, H., Bindal, M. K., Thapa, R., & Kathait, A. (2021). Floods challenges and its management case study of Gujarat floods-2017. Delhi.

  36. United States Geological Survey. (2023). USGS Earth explorer. Retrieved August 1, 2023, from https://earthexplorer.usgs.gov/.

  37. What are the band designations for the Landsat satellites? (n.d.). Retrieved August 1, 2023, from https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites#:~:text=Landsat%204%2D5%20Thematic%20Mapper,during%20Level%2D1%20product%20generation.

  38. Friend, P. F., & Sinha, R. (1993). Braiding and meandering parameters. Geological Society, London, Special Publications, 75(1), 105–111. https://doi.org/10.1144/GSL.SP.1993.075.01.05

    Article  ADS  Google Scholar 

  39. Makaske, B. (2014). Channel pattern. In Encyclopedia of planetary landforms (pp. 1–7). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-9213-9_84-1.

  40. Brenna, A., Bizzi, S., & Surian, N. (2024). How multiple anthropic pressures may lead to unplanned channel patterns: Insights from the evolutionary trajectory of the Po River (Italy). CATENA, 234, 107598. https://doi.org/10.1016/j.catena.2023.107598

    Article  Google Scholar 

  41. Khan, A., Rao, L. A. K., Yunus, A. P., & Govil, H. (2018). Characterization of channel planform features and sinuosity indices in parts of Yamuna River flood plain using remote sensing and GIS techniques. Arabian Journal of Geosciences, 11(17), 525. https://doi.org/10.1007/s12517-018-3876-9

    Article  Google Scholar 

  42. Sajinkumar, K. S., Arya, A., Rajaneesh, A., Oommen, T., Yunus, A. P., Rani, V. R., Avtar, R., & Thrivikramji, K. P. (2022). Migrating rivers, consequent paleochannels: The unlikely partners and hotspots of flooding. Science of The Total Environment, 807, 150842. https://doi.org/10.1016/j.scitotenv.2021.150842

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Khan, A., Govil, H., Khan, H. H., Kumar Thakur, P., Yunus, A. P., & Pani, P. (2022). Channel responses to flooding of Ganga River, Bihar India, 2019 using SAR and optical remote sensing. Advances in Space Research, 69(4), 1930–1947. https://doi.org/10.1016/j.asr.2021.08.039

    Article  Google Scholar 

  44. Rehman, S., Rahaman, M. H., Masroor, M., Roshani, Sajjad, H., Ahmed, R., Yunus, A. P., & Sahana, M. (2023). Analyzing vulnerability of communities to flood using composite vulnerability index: Evidence from Bhagirathi Sub-basin, India. Natural Hazards, 119(3), 1341–1377. https://doi.org/10.1007/s11069-023-06170-z

    Article  Google Scholar 

  45. Zhang, Y. (2024). Effect of river channel planar complexity on riparian vegetation-river flow relationships in arid environments. Science of The Total Environment, 912, 168988. https://doi.org/10.1016/j.scitotenv.2023.168988

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Ali, P. Y., Jie, D., Khan, A., Sravanthi, N., Rao, L. A. K., & Hao, C. (2019). Channel migration characteristics of the Yamuna River from 1954 to 2015 in the vicinity of Agra, India: A case study using remote sensing and GIS. International Journal of River Basin Management, 17(3), 367–375. https://doi.org/10.1080/15715124.2019.1566238

    Article  Google Scholar 

  47. Yadav, S. K., & Singh, S. K. (2022). Morpho-tectonic assessment of Central Northern escarpment of Peninsular India, based on tectonically sensitive geomorphic indices. Physical Geography, 43(6), 753–783. https://doi.org/10.1080/02723646.2021.1899478

    Article  Google Scholar 

  48. Baniya, S., Deshar, R., Chauhan, R., & Thakuri, S. (2023). Assessment of channel migration of Koshi River in Nepal using remote sensing and GIS. Environmental Challenges, 11, 100692. https://doi.org/10.1016/j.envc.2023.100692

    Article  Google Scholar 

  49. Clavijo-Rivera, A., Sanclemente, E., Altamirano-Moran, D., & Muñoz-Ramirez, M. (2023). Temporal analysis of the planform morphology of the Quevedo River, Ecuador, using remote sensing. Journal of South American Earth Sciences, 128, 104467. https://doi.org/10.1016/j.jsames.2023.104467

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Pandit Deendayal Energy University and Nirma University. The author Sudhir Kumar Singh expresses sincere thanks to the Coordinator of  K. Banerjee Centre of Atmospheric and Ocean Studies, IIDS, Nehru Science Centre and DST-FIST for providing infrastructural facilities to the Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruvesh Patel.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jodhani, K.H., Patel, D., Madhavan, N. et al. Channel planform dynamics using earth observations across Rel river, western India: A synergetic approach. Spat. Inf. Res. (2024). https://doi.org/10.1007/s41324-024-00573-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41324-024-00573-1

Keywords

Navigation