Skip to main content
Log in

The brown marine algae “Laminaria digitata” for the outstanding biosorption of methylene blue and reactive blue 19 dyes: kinetics, equilibrium, thermodynamics, regeneration, and mechanism studies

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

In the present work, the brown alga Laminaria digitata (L. Digita) was used as a biosorbent material for the removal of Methylene Blue (MB) and Reactive Blue 19 (RB19) dyes. The L. Digita was characterized by Fourier transform infrared spectroscopy, Scanning electron microscopy coupled with Energy-dispersive X-ray spectroscopy (SEM–EDS), Elemental analysis, Thermogravimetric analysis, and pH of point zero charge. Preliminary tests showed that equilibrium was reached after 15 min of biosorption of the MB and RB19 dyes, and the highest efficiency achieved was 95% and 60%, respectively. The pseudo-second-order kinetic model was the most suitable to fit the experimental data of MB and RB19. The Langmuir model was the most suitable to describe the biosorption equilibrium of MB, with an outstanding maximum biosorption capacity that reached 2976.6 mg/g, while the Freundlich model described the biosorption of RB19. The thermodynamic parameters revealed that the biosorption of MB and RB19 was spontaneous and exothermic in nature. Finally, regeneration tests revealed that the L. Digita algae could be reused effectively four times for MB and twice for RB19. Given the overall obtained results, we can conclude that L. Digita can be used as an effective alternative for the treatment of aqueous solutions containing cationic and anionic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ait Ahsaine H, Zbair M, Anfar Z et al (2018) Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: kinetics, equilibrium isotherms and surface statistical modeling. Mater Today Chem. https://doi.org/10.1016/j.mtchem.2018.03.004

    Article  Google Scholar 

  2. Zbair M, Anfar Z, Ahsaine HA et al (2018) Acridine orange adsorption by zinc oxide / almond shell activated carbon composite : operational factors, mechanism and performance optimization using central composite design and surface modeling. J Environ Manage 206:383–397. https://doi.org/10.1016/j.jenvman.2017.10.058

    Article  Google Scholar 

  3. Nayak S, Kale P (2020) A review of chromite mining in Sukinda Valley of India: impact and potential remediation measures. Int J Phytoremediation 22:804–818. https://doi.org/10.1080/15226514.2020.1717432

    Article  Google Scholar 

  4. Lee JW, Choi SP, Thiruvenkatachari R et al (2006) Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dye Pigment 69:196–203. https://doi.org/10.1016/j.dyepig.2005.03.008

    Article  Google Scholar 

  5. Khan I, Saeed K, Zekker I et al (2022) Review on methylene blue: its properties, uses, toxicity and photodegradation. Water. https://doi.org/10.3390/w14020242

    Article  Google Scholar 

  6. Wang W, Shi R, Zhang W et al (2019) Enhanced generation efficiency of singlet oxygen for methylene blue released from hydroxyapatite-MB@tannic acid-Fe(III) ions. Pigment Resin Technol 48:185–196. https://doi.org/10.1108/PRT-02-2018-0011

    Article  Google Scholar 

  7. Shinji K, Chikama T, Okazaki S et al (2021) Molecular characteristics of the photosensitizer TONS504: comparison of its singlet oxygen quantum yields and photodynamic antimicrobial effect with those of methylene blue. J Photochem Photobiol B Biol. https://doi.org/10.1016/j.jphotobiol.2021.112239

    Article  Google Scholar 

  8. Top WMC, Gillman PK, de Langen CJ, Kooy A (2014) Fatal methylene blue associated serotonin toxicity. Neth J Med 72:179–181

    Google Scholar 

  9. Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97:512–521. https://doi.org/10.1016/j.biortech.2005.02.045

    Article  Google Scholar 

  10. Zaghbani N, Hafiane A, Dhahbi M (2007) Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration. Sep Purif Technol 55:117–124. https://doi.org/10.1016/j.seppur.2006.11.008

    Article  Google Scholar 

  11. Vilar VJP, Botelho CMS, Boaventura RAR (2007) Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behaviour. J Hazard Mater 147:120–132. https://doi.org/10.1016/j.jhazmat.2006.12.055

    Article  Google Scholar 

  12. Vijayaraghavan K, Won SW, Mao J, Yun YS (2008) Chemical modification of Corynebacterium glutamicum to improve methylene blue biosorption. Chem Eng J 145:1–6. https://doi.org/10.1016/j.cej.2008.02.011

    Article  Google Scholar 

  13. Saeed A, Iqbal M, Zafar SI (2009) Immobilization of Trichoderma viride for enhanced methylene blue biosorption: batch and column studies. J Hazard Mater 168:406–415. https://doi.org/10.1016/j.jhazmat.2009.02.058

    Article  Google Scholar 

  14. Palmieri G, Cennamo G, Sannia G (2005) Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb Technol 36:17–24. https://doi.org/10.1016/j.enzmictec.2004.03.026

    Article  Google Scholar 

  15. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  Google Scholar 

  16. Abdulhameed AS, Firdaus Hum NNM, Rangabhashiyam S et al (2021) Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. J Environ Chem Eng 9:105530. https://doi.org/10.1016/j.jece.2021.105530

    Article  Google Scholar 

  17. Rangabhashiyam S, Willis G, Nhamo C, Siyanda M (2021) Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants. J Hazard Mater 417:125960. https://doi.org/10.1016/j.jhazmat.2021.125960

    Article  Google Scholar 

  18. Anjaneyulu Y, Sreedhara Chary N, Samuel Suman Raj D (2005) Decolourization of industrial effluents - available methods and emerging technologies - a review. Rev Environ Sci Biotechnol 4:245–273. https://doi.org/10.1007/s11157-005-1246-z

    Article  Google Scholar 

  19. Rana A, Sudhaik A, Raizada P et al (2021) An overview on cellulose-supported semiconductor photocatalysts for water purification. Nanotechnol Environ Eng 6:40. https://doi.org/10.1007/s41204-021-00135-y

    Article  Google Scholar 

  20. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: A review. J Environ Manage 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  Google Scholar 

  21. Kannan K, Radhika D, Reddy KR et al (2021) Gd3+and Y3+co-doped mixed metal oxide nanohybrids for photocatalytic and antibacterial applications. Nano Express. https://doi.org/10.1088/2632-959X/abdd87

    Article  Google Scholar 

  22. Srinivas M, Ch Venkata R, Kakarla RR et al (2019) Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes. Mater Res Express. https://doi.org/10.1088/2053-1591/ab5328

    Article  Google Scholar 

  23. Reddy KR, Jyothi MS, Raghu AV et al (2020) Nanocarbons-supported and polymers-supported titanium dioxide nanostructures as efficient photocatalysts for remediation of contaminated wastewater and hydrogen production. Nanophotocatalysis and environmental applications. Springer, Berlin, pp 139–169

    Chapter  Google Scholar 

  24. Kumar S, Reddy KR, Reddy C et al (2021) Metal nitrides and graphitic carbon nitrides as novel photocatalysts for hydrogen production and environmental remediation. Nanostructured materials for environmental applications. Springer, Berlin, pp 485–519

    Chapter  Google Scholar 

  25. Zhao L, Li K, Wu R et al (2020) Catalytic filter for the removal of dust and NOx at low temperature. Mater Res Express. https://doi.org/10.1088/2053-1591/abc71e

    Article  Google Scholar 

  26. Rangabhashiyam S, Vijayaraghavan K, Jawad AH, Singh P (2021) Sustainable approach of batch and continuous biosorptive systems for praseodymium and thulium ions removal in mono and binary aqueous solutions. Environ Technol Innov 23:101581. https://doi.org/10.1016/j.eti.2021.101581

    Article  Google Scholar 

  27. Ouasfi N, Zbair M, Sabbar EM, Khamliche L (2019) High performance of Zn–Al–CO3 layered double hydroxide for anionic reactive blue 21 dye adsorption: kinetic, equilibrium, and thermodynamic studies. Nanotechnol Environ Eng 4:1–13. https://doi.org/10.1007/s41204-019-0063-5

    Article  Google Scholar 

  28. Mehr HV, Saffari J, Mohammadi SZ, Shojaei S (2020) The removal of methyl violet 2B dye using palm kernel activated carbon: thermodynamic and kinetics model. Int J Environ Sci Technol 17:1773–1782. https://doi.org/10.1007/s13762-019-02271-0

    Article  Google Scholar 

  29. Manzar MS, Khan G, dos Santos Lins PV et al (2021) RSM-CCD optimization approach for the adsorptive removal of Eriochrome Black T from aqueous system using steel slag-based adsorbent: characterization, isotherm, kinetic modeling and thermodynamic analysis. J Mol Liq 339:116714. https://doi.org/10.1016/j.molliq.2021.116714

    Article  Google Scholar 

  30. Jóźwiak T, Filipkowska U, Brym S, Kopeć L (2020) Use of aminated hulls of sunflower seeds for the removal of anionic dyes from aqueous solutions. Int J Environ Sci Technol 17:1211–1224. https://doi.org/10.1007/s13762-019-02536-8

    Article  Google Scholar 

  31. Jinendra U, Bilehal D, Nagabhushana BM et al (2019) Template-free hydrothermal synthesis of hexa ferrite nanoparticles and its adsorption capability for different organic dyes: comparative adsorption studies, isotherms and kinetic studies. Mater Sci Energy Technol 2:657–666. https://doi.org/10.1016/j.mset.2019.08.005

    Article  Google Scholar 

  32. dos Santos KJL, de Souza dos Santos GE, de Sá ÍMGL et al (2019) Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122093

    Article  Google Scholar 

  33. Berslin D, Reshmi A, Sivaprakash B et al (2022) Remediation of emerging metal pollutants using environment friendly biochar- review on applications and mechanism. Chemosphere 290:133384. https://doi.org/10.1016/j.chemosphere.2021.133384

    Article  Google Scholar 

  34. Zeghoud L, Gouamid M, Ben Mya O et al (2019) Adsorption of methylene blue dye from aqueous solutions using two different parts of palm tree: palm frond base and palm leaflets. Water Air Soil Pollut 230:195. https://doi.org/10.1007/s11270-019-4255-1

    Article  Google Scholar 

  35. Lebron YAR, Moreira VR, de Souza Santos LV (2019) Biosorption of methylene blue and eriochrome black T onto the brown macroalgae Fucus vesiculosus: equilibrium, kinetics, thermodynamics and optimization. Environ Technol. https://doi.org/10.1080/09593330.2019.1626914

    Article  Google Scholar 

  36. Georgin J, Franco DSP, Netto MS et al (2020) Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08496-8

    Article  Google Scholar 

  37. Farooq MU, Jalees MI, Iqbal A et al (2019) Characterization and adsorption study of biosorbents for the removal of basic cationic dye: Kinetic and isotherm analysis. Desalin Water Treat 160:333–342. https://doi.org/10.5004/dwt.2019.24173

    Article  Google Scholar 

  38. Rahmat, N. A., Ali, A. A., Salmiati et al. Removal of remazol brilliant blue R from aqueous solution by adsorption using pineapple leaf powder and lime peel powder. Water Air Soil Pollut 227, 105 https://doi.org/10.1007/s11270-016-2807-1 (2016)

  39. Hannachi Y, Hafidh A (2020) Biosorption potential of Sargassum muticum algal biomass for methylene blue and lead removal from aqueous medium. Int J Environ Sci Technol 17:3875–3890. https://doi.org/10.1007/s13762-020-02742-9

    Article  Google Scholar 

  40. Bold HCMJW (1984) Introduction to the Algae, 2nd edn. Prentice-Hall, New Jersey

    Google Scholar 

  41. Wang S, Hamza MF, Vincent T et al (2017) Praseodymium sorption on Laminaria digitata algal beads and foams. J Colloid Interface Sci 504:780–789. https://doi.org/10.1016/j.jcis.2017.06.028

    Article  Google Scholar 

  42. Papageorgiou SK, Kouvelos EP, Katsaros FK (2008) Calcium alginate beads from Laminaria digitata for the removal of Cu+2 and Cd+2 from dilute aqueous metal solutions. Desalination 224:293–306. https://doi.org/10.1016/j.desal.2007.06.011

    Article  Google Scholar 

  43. Ouasfi N, Zbair M, Bouzikri S et al (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental{,} modeling and DFT theoretical insights. RSC Adv 9:9792–9808. https://doi.org/10.1039/C9RA01086F

    Article  Google Scholar 

  44. Noh JS, Schwarz JA (1989) Estimation of the point of zero charge of simple oxides by mass titration. J Colloid Interface Sci 130:157–164. https://doi.org/10.1016/0021-9797(89)90086-6

    Article  Google Scholar 

  45. Crist RH, Oberholser K, Shank N, Nguyen M (1981) Nature of bonding between metallic ions and algal cell walls. Environ Sci Technol 15:1212–1217. https://doi.org/10.1021/es00092a010

    Article  Google Scholar 

  46. Schiewer S, Wong MH (2000) Ionic strength effects in biosorption of metals by marine algae. Chemosphere 41:271–282. https://doi.org/10.1016/S0045-6535(99)00421-X

    Article  Google Scholar 

  47. Raghu AV, Gadaginamath GS, Mathew NT et al (2007) Synthesis and characterization of novel polyurethanes based on 4, 4′-[1, 4-phenylenedi-diazene-2, 1-diyl] bis (2-carboxyphenol) and 4, 4′-[1, 4-phenylenedi-diazene-2, 1-diyl] bis (2-chlorophenol) hard segments. React Funct Polym 67:503–514. https://doi.org/10.1016/j.reactfunctpolym.2007.02.003

    Article  Google Scholar 

  48. Zbair M, Bottlinger M, Ainassaari K et al (2018) Hydrothermal carbonization of argan nut shell: functional mesoporous carbon with excellent performance in the adsorption of bisphenol A and diuron. Waste Biomass Valoriz 11:1565–1584. https://doi.org/10.1007/s12649-018-00554-0

    Article  Google Scholar 

  49. Zbair M, Anfar Z, Ait Ahsaine H, Khallok H (2019) Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed. RSC Adv 9:1084–1094. https://doi.org/10.1039/C8RA09337G

    Article  Google Scholar 

  50. Mohd Fauziee NA, Chang LS, Wan Mustapha WA et al (2021) Functional polysaccharides of fucoidan, laminaran and alginate from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana). Int J Biol Macromol 167:1135–1145. https://doi.org/10.1016/j.ijbiomac.2020.11.067

    Article  Google Scholar 

  51. Kannan S (2014) FT-IR and EDS analysis of the seaweeds Sargassum wightii (brown algae) and Gracilaria corticata (red algae). Int J Curr Microbiol Appl Sci 3:341–351

    Google Scholar 

  52. Leal D, Matsuhiro B, Rossi M, Caruso F (2008) FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr Res 343:308–316. https://doi.org/10.1016/j.carres.2007.10.016

    Article  Google Scholar 

  53. Digala P, Saravanan M, Dhanraj M et al (2022) Optimized extraction of sulfated polysaccharide from brown seaweed Sargassum polycystum and their evaluation of anti-cancer and wound healing potential. South African J Bot. https://doi.org/10.1016/j.sajb.2022.03.015

    Article  Google Scholar 

  54. de Souza Costa HP, da Silva MGC, Vieira MGA (2021) Fixed bed biosorption and ionic exchange of aluminum by brown algae residual biomass. J Water Process Eng 42:102117. https://doi.org/10.1016/j.jwpe.2021.102117

    Article  Google Scholar 

  55. Jayakumar V, Govindaradjane S, Rajamohan N, Rajasimman M (2022) Biosorption potential of brown algae, Sargassum polycystum, for the removal of toxic metals, cadmium and zinc. Environ Sci Pollut Res 29:41909–41922. https://doi.org/10.1007/s11356-021-15185-7

    Article  Google Scholar 

  56. Vijayaraghavan K, Sathishkumar M, Balasubramanian R (2010) Biosorption of lanthanum, cerium, europium, and ytterbium by a brown marine alga, turbinaria conoides. Ind Eng Chem Res 49:4405–4411. https://doi.org/10.1021/ie1000373

    Article  Google Scholar 

  57. Membere E, Sallis P (2018) Thermochemical characterization of brown seaweed, Laminaria digitata from UK shores. J Anal Appl Pyrolysis 131:42–51. https://doi.org/10.1016/j.jaap.2018.02.011

    Article  Google Scholar 

  58. Zhu W, Ooi VEC, Chan PKS, Ang PO Jr (2003) Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patens and determination of its anti-herpes activity. Biochem Cell Biol 81:25–33. https://doi.org/10.1139/o02-169

    Article  Google Scholar 

  59. Pham TN, Nam WJ, Jeon YJ, Yoon HH (2012) Volatile fatty acids production from marine macroalgae by anaerobic fermentation. Bioresour Technol 124:500–503. https://doi.org/10.1016/j.biortech.2012.08.081

    Article  Google Scholar 

  60. Song M, Duc Pham H, Seon J, Chul Woo H (2015) Marine brown algae: a conundrum answer for sustainable biofuels production. Renew Sustain Energy Rev 50:782–792. https://doi.org/10.1016/j.rser.2015.05.021

    Article  Google Scholar 

  61. Tedesco S, Daniels S (2019) Evaluation of inoculum acclimatation and biochemical seasonal variation for the production of renewable gaseous fuel from biorefined Laminaria sp. waste streams. Renew Energy 139:1–8. https://doi.org/10.1016/j.renene.2019.02.057

    Article  Google Scholar 

  62. Wang F, Wang J, Gu C et al (2019) Effects of process water recirculation on solid and liquid products from hydrothermal carbonization of Laminaria. Bioresour Technol 292:121996. https://doi.org/10.1016/j.biortech.2019.121996

    Article  Google Scholar 

  63. Zhang R, Yuen AKL, de Nys R et al (2020) Step by step extraction of bio-actives from the brown seaweeds, Carpophyllum flexuosum, Carpophyllum plumosum, Ecklonia radiata and Undaria pinnatifida. Algal Res 52:102092. https://doi.org/10.1016/j.algal.2020.102092

    Article  Google Scholar 

  64. Huang Y, Guo X, Ding Z et al (2020) Environmentally persistent free radicals in biochar derived from Laminaria japonica grown in different habitats. J Anal Appl Pyrolysis 151:104941. https://doi.org/10.1016/j.jaap.2020.104941

    Article  Google Scholar 

  65. Rizzo AM, Prussi M, Bettucci L et al (2013) Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl Energy 102:24–31. https://doi.org/10.1016/j.apenergy.2012.08.039

    Article  Google Scholar 

  66. Wielage B, Lampke T, Marx G et al (1999) Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta 337:169–177. https://doi.org/10.1016/s0040-6031(99)00161-6

    Article  Google Scholar 

  67. Nowakowski DJ, Jones JM (2008) Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds. J Anal Appl Pyrolysis 83:12–25. https://doi.org/10.1016/j.jaap.2008.05.007

    Article  Google Scholar 

  68. Özer A, Özer D, Özer A (2004) The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Process Biochem 39:2183–2191. https://doi.org/10.1016/j.procbio.2003.11.008

    Article  Google Scholar 

  69. Elouahli A, Zbair M, Anfar Z et al (2018) Apatitic tricalcium phosphate powder: high sorption capacity of hexavalent chromium removal. Surf Interfaces 13:139–147. https://doi.org/10.1016/j.surfin.2018.09.006

    Article  Google Scholar 

  70. Erentürk S, Malkoç E (2007) Removal of lead(II) by adsorption onto Viscum album L.: effect of temperature and equilibrium isotherm analyses. Appl Surf Sci 253:4727–4733. https://doi.org/10.1016/j.apsusc.2006.10.042

    Article  Google Scholar 

  71. Ouasfi N, Bouzekri S, Zbair M et al (2019) Carbonaceous material prepared by ultrasonic assisted pyrolysis from algae (Bifurcaria bifurcata): response surface modeling of aspirin removal. Surf Interfaces 14:61–71. https://doi.org/10.1016/j.surfin.2018.11.008

    Article  Google Scholar 

  72. Gunasundari E, Senthil Kumar P, Rajamohan N, Vellaichamy P (2020) Feasibility of naphthol green-b dye adsorption using microalgae: Thermodynamic and kinetic analysis. Desalin Water Treat 192:358–370. https://doi.org/10.5004/dwt.2020.25777

    Article  Google Scholar 

  73. El Atouani S, Belattmania Z, Reani A et al (2019) Brown seaweed sargassum muticum as low-cost biosorbent of methylene blue. Int J Environ Res 13:131–142. https://doi.org/10.1007/s41742-018-0161-4

    Article  Google Scholar 

  74. Kamaz M, Rocha P, Sengupta A et al (2018) Efficient removal of chemically toxic dyes using microorganism from activated sludge: understanding sorption mechanism, kinetics, and associated thermodynamics. Sep Sci Technol 53:1760–1776. https://doi.org/10.1080/01496395.2018.1440305

    Article  Google Scholar 

  75. El Khomri M, El Messaoudi N, Dbik A, LA Bentahar S (2020) Efficient adsorbent derived from Argania Spinosa for the adsorption of cationic dye: kinetics, mechanism, isotherm and thermodynamic study. Surf Interfaces 20:100601. https://doi.org/10.1016/j.surfin.2020.100601

    Article  Google Scholar 

  76. Bin-Dahman OA, Saleh TA (2022) Synthesis of polyamide grafted on biosupport as polymeric adsorbents for the removal of dye and metal ions. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02382-8

    Article  Google Scholar 

  77. Sarojini G, Babu SV, Rajamohan N et al (2022) Application of a polymer-magnetic-algae based nano-composite for the removal of methylene blue – characterization, parametric and kinetic studies. Environ Pollut 292:118376. https://doi.org/10.1016/j.envpol.2021.118376

    Article  Google Scholar 

  78. Sarojini G, Venkatesh Babu S, Rajamohan N, Rajasimman M (2022) Performance evaluation of polymer-marine biomass based bionanocomposite for the adsorptive removal of malachite green from synthetic wastewater. Environ Res 204:112132. https://doi.org/10.1016/j.envres.2021.112132

    Article  Google Scholar 

  79. Sharma A, Syed Z, Brighu U et al (2019) Adsorption of textile wastewater on alkali-activated sand. J Clean Prod 220:23–32. https://doi.org/10.1016/j.jclepro.2019.01.236

    Article  Google Scholar 

  80. Huang Y, Yang C, Sun Z et al (2015) Removal of cadmium and lead from aqueous solutions using nitrilotriacetic acid anhydride modified ligno-cellulosic material. RSC Adv 5:11475–11484. https://doi.org/10.1039/c4ra14859b

    Article  Google Scholar 

  81. Lodeiro P, Barriada JL, Herrero R, Sastre de Vicente ME (2006) The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies. Environ Pollut 142:264–273. https://doi.org/10.1016/j.envpol.2005.10.001

    Article  Google Scholar 

  82. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids J Am Chem Soc 38:2221–2295. https://doi.org/10.1021/ja02268a002

    Article  Google Scholar 

  83. Freundlich H (1907) Über die Adsorption in Lösungen. Zeitschrift für Phys Chemie 57U:385–470. https://doi.org/10.1515/zpch-1907-5723

    Article  Google Scholar 

  84. Shao H, Li Y, Zheng L et al (2017) Removal of methylene blue by chemically modified defatted brown algae Laminaria japonica. J Taiwan Inst Chem Eng 80:525–532. https://doi.org/10.1016/j.jtice.2017.08.023

    Article  Google Scholar 

  85. Li D, Yan J, Liu Z, Liu Z (2016) Adsorption kinetic studies for removal of methylene blue using activated carbon prepared from sugar beet pulp. Int J Environ Sci Technol 13:1815–1822. https://doi.org/10.1007/s13762-016-1012-5

    Article  Google Scholar 

  86. Dahlan NA, Lee LW, Pushpamalar J, Ng SL (2019) Adsorption of methylene blue onto carboxymethyl sago pulp-immobilized sago waste hydrogel beads. Int J Environ Sci Technol 16:2047–2058. https://doi.org/10.1007/s13762-018-1789-5

    Article  Google Scholar 

  87. Zhou Q, Gong WQ, Li YB et al (2011) Biosorption of methylene blue onto spent corncob substrate: kinetics, equilibrium and thermodynamic studies. Water Sci Technol 63:2775–2780. https://doi.org/10.2166/wst.2011.542

    Article  Google Scholar 

  88. Elimbi A, Njouonkou S, Ndi Nsami J et al (2019) Adsorption test of methylene blue onto porous powdered ceramics obtained from mixtures of kaolin–bauxite and kaolin–oyster shell. Int J Environ Sci Technol 16:1337–1350. https://doi.org/10.1007/s13762-018-1754-3

    Article  Google Scholar 

  89. Banat F, Al-Asheh S, Al-Makhadmeh L (2003) Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem 39:193–202. https://doi.org/10.1016/S0032-9592(03)00065-7

    Article  Google Scholar 

  90. Zhang SJ, Yang M, Yang QX et al (2003) Biosorption of reactive dyes by the mycelium pellets of a new isolate of Penicillium oxalicum. Biotechnol Lett 25:1479–1482. https://doi.org/10.1023/A:1025036407588

    Article  Google Scholar 

  91. Çiçek F, Özer D, Özer A, Özer A (2007) Low cost removal of reactive dyes using wheat bran. J Hazard Mater 146:408–416. https://doi.org/10.1016/j.jhazmat.2006.12.037

    Article  Google Scholar 

  92. Iqbal M, Saeed A (2007) Biosorption of reactive dye by loofa sponge-immobilized fungal biomass of Phanerochaete chrysosporium. Process Biochem 42:1160–1164. https://doi.org/10.1016/j.procbio.2007.05.014

    Article  Google Scholar 

  93. Değermenci GD, Değermenci N, Ayvaoğlu V et al (2019) Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies. J Clean Prod 225:1220–1229. https://doi.org/10.1016/j.jclepro.2019.03.260

    Article  Google Scholar 

  94. Ergene A, Ada K, Tan S, Katircioǧlu H (2009) Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: equilibrium and kinetic modeling studies. Desalination 249:1308–1314. https://doi.org/10.1016/j.desal.2009.06.027

    Article  Google Scholar 

  95. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116. https://doi.org/10.1016/j.watres.2017.04.014

    Article  Google Scholar 

  96. Tran HN, You S-J, Chao H-P (2017) Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J Environ Manage 188:322–336. https://doi.org/10.1016/j.jenvman.2016.12.003

    Article  Google Scholar 

  97. Kavitha D, Namasivayam C (2007) Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour Technol 98:14–21. https://doi.org/10.1016/j.biortech.2005.12.008

    Article  Google Scholar 

  98. Ponnusami V, Vikram S, Srivastava SN (2008) Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions. J Hazard Mater 152:276–286. https://doi.org/10.1016/j.jhazmat.2007.06.107

    Article  Google Scholar 

  99. Zhou X, Zhou X (2014) The unit problem in the thermodynamic calculation of adsorption using the langmuir equation. Chem Eng Commun 201:1459–1467. https://doi.org/10.1080/00986445.2013.818541

    Article  Google Scholar 

  100. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  Google Scholar 

  101. Rangabhashiyam S, Sujata Lata BP (2018) Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surf Interfaces 10:197–215. https://doi.org/10.1016/j.surfin.2017.09.011

    Article  Google Scholar 

  102. Bouzikri S, Ouasfi N, Benzidia N et al (2020) Marine alga “Bifurcaria bifurcata”: biosorption of reactive blue 19 and methylene blue from aqueous solutions. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07846-w

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to CNRST (National Center of Scientific and Technical Research, Morocco) for the financial support provided to one of the authors of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Said Bouzikri or Layachi Khamliche.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzikri, S., Ouasfi, N., Bentiss, F. et al. The brown marine algae “Laminaria digitata” for the outstanding biosorption of methylene blue and reactive blue 19 dyes: kinetics, equilibrium, thermodynamics, regeneration, and mechanism studies. Nanotechnol. Environ. Eng. 8, 317–332 (2023). https://doi.org/10.1007/s41204-022-00303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00303-8

Keywords

Navigation