Skip to main content

Nanocarbons-Supported and Polymers-Supported Titanium Dioxide Nanostructures as Efficient Photocatalysts for Remediation of Contaminated Wastewater and Hydrogen Production

  • Chapter
  • First Online:
Nanophotocatalysis and Environmental Applications

Abstract

Organic contaminants (textile dyes, pesticides) in industrial wastewater have adverse effects on the environment and human health. Such environmental pollutants are resistant in the environment and are difficult to completely remove through treatment techniques. Therefore, titanium dioxide (TiO2) nanostructure-based photocatalytic processes have received much attention due to their environmentally green nature with high efficiency for complete photodegradation of organic pollutants to produce safe and clean water.

In this chapter, zero-dimensional to three-dimensional TiO2 nanostructures functionalized with various polymeric and nanocarbon hybrid materials are discussed as low-cost, nontoxic, and highly efficient photocatalytic materials for photodegradation of chemical pollutants, in comparison with pristine TiO2, through expansion of the visible light photoresponse and regulation of the bandgap properties of TiO2. Various chemical synthesis methods, surface modifications with various polymers and nanostructured carbons, compositions, morphological structures, growth mechanisms, physicochemical properties, electronic and optical characteristics, and photocatalytic mechanisms (e.g., reactive oxygen species generation) of various heterostructured TiO2-based photocatalysts are discussed in terms of their prospects and future challenges in the fields of photocatalytic environmental remediation and hydrogen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

λ:

Wavelength (nm)

λmax :

Specific wavelength maximum (nm)

1D:

One-dimensional

2,4-D:

2,4-Dichlorophenoxyacetic acid

2-CP:

2-Chlorophenol

A:

Absorbance

AC:

Activated carbon

ALD:

Atomic layer deposition

APS:

Ammonium persulfate

B:

Path length of sample (m)

BPA:

Bisphenol A

C:

Concentration (mol/m3)

C0 :

Initial concentration (mol/m3)

CB:

Conduction band

CEPDA:

Electrophoretic deposition–anodization

CFL:

Compact fluorescent lamp

CNT:

Carbon nanotube

COD:

Chemical oxygen demand

CVD:

Chemical vapor deposition

DSC:

Digital scanning calorimeter

Ε:

Molar absorptivity (m2/mol)

e :

Electron

Eg :

Bandgap energy

FE-SEM:

Field emission scanning electron microscopy

FTIR:

Fourier transform infrared

G:

Graphene

GO:

Graphene oxide

Η:

Degree of photocatalytic degradation

h+ :

Hole

HOMO:

Highest occupied molecular orbital

hv:

Photon energy

K:

Rate constant (min−1)

LED:

Light-emitting diode

LUMO:

Lowest unoccupied molecular orbital

MB:

Methylene blue

MO:

Methyl orange

MWCNT:

Multiwalled carbon nanotube

P(3HB-co-3HHx):

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)

PAA:

Poly(acrylic acid)

PANI:

Polyaniline

PC:

Polycarbonate

PE:

Polythene

PET:

Poly(ethylene terephthalate)

PMMA:

Poly(methyl methacrylate)

PP:

Polypropylene

PPF:

Polypropylene fabric

PPy:

Polypyrrole

PS:

Polystyrene

PSP4VP:

Poly(styrene)-co-poly(4-vinylpyridine)

PTh:

Polythiophene

PVA:

Poly(vinyl alcohol)

PVAc:

Polyvinyl acetate

PVC:

Polyvinyl chloride

PVDF:

Poly(vinylidene difluoride)

R:

Relative concentration

rGO:

Reduced graphene oxide

RhB:

Rhodamine B

SC:

Semiconductor

SDS:

Sodium dodecyl sulfate

SWCNT:

Single-walled carbon nanotube

T:

Time (min)

T:

Transmittance

Tc:

Crystallization temperature (K)

TCP:

Transformer-coupled plasma

TEM:

Transmission electron microscopy

Tg:

Glass transition temperature (°C)

TGA:

Thermogravimetric analyzer

UV:

Ultraviolet

UV-Vis:

Ultraviolet–visible

VB:

Valence band

XRD:

X-ray diffraction

References

  • Abd El-Rehim HA, Hegazy E-SA, Diaa DA (2012) Photo-catalytic degradation of metanil yellow dye using TiO2 immobilized into polyvinyl alcohol/acrylic acid microgels prepared by ionizing radiation. React Funct Polym 72(11):823–831

    Article  CAS  Google Scholar 

  • Abdulla H, Abbo A (2012) Optical and electrical properties of thin films of polyaniline and polypyrrole. Int J Electrochem Sci 7:10666–10678

    CAS  Google Scholar 

  • Accorsi G, Armaroli N (2010) Taking advantage of the electronic excited states of [60]-fullerenes. J Phys Chem C 114(3):1385–1403

    Article  CAS  Google Scholar 

  • Ahmed T et al (2017) m-BiVO4 hollow spheres coated on carbon fiber with superior reusability as photocatalyst. Colloids Surf A Physicochem Eng Asp 531(Suppl C):213–220

    Article  CAS  Google Scholar 

  • Al-Nafiey A et al (2017) Nickel oxide nanoparticles grafted on reduced graphene oxide (rGO/NiO) as efficient photocatalyst for reduction of nitroaromatics under visible light irradiation. J Photochem Photobiol A Chem 336(Suppl C):198–207

    Article  CAS  Google Scholar 

  • Apostolopoulou V et al (2009) Preparation and characterization of [60] fullerene nanoparticles supported on titania used as a photocatalyst. Colloids Surf A Physicochem Eng Asp 349(1):189–194

    Article  CAS  Google Scholar 

  • Aryal S et al (2008) Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning. Mater Sci Eng C 28(1):75–79

    Article  CAS  Google Scholar 

  • Bai H, Liu Z, Sun DD (2012) The design of a hierarchical photocatalyst inspired by natural forest and its usage on hydrogen generation. Int J Hydrog Energy 37(19):13998–14008

    Article  CAS  Google Scholar 

  • Bailón-García E et al (2017) Development of carbon-ZrO2 composites with high performance as visible-light photocatalysts. Appl Catal B Environ 217(Suppl C):540–550

    Article  CAS  Google Scholar 

  • Ballav N, Biswas M (2003) Preparation and evaluation of a nanocomposite of polythiophene with Al2O3. Polym Int 52(1):179–184

    Article  CAS  Google Scholar 

  • Basavaraja C et al (2009) Transport properties of polypyrrole films doped with sulphonic acids. Bull Kor Chem Soc 30(11):2701–2706

    Article  CAS  Google Scholar 

  • Bhatkhande DS, Pangarkar VG, Beenackers AACM (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77(1):102–116

    Article  CAS  Google Scholar 

  • Brezová V et al (1994) Photocatalytic degradation of p-toluenesulphonic acid in aqueous systems containing powdered and immobilized titanium dioxide. J Photochem Photobiol A Chem 83(1):69–75

    Article  Google Scholar 

  • Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology—a technology for crystal growth and materials processing. William Andrew Publishing/Noyes, New York

    Google Scholar 

  • Byrne JA et al (1998) Immobilisation of TiO2 powder for the treatment of polluted water. Appl Catal B Environ 17(1):25–36

    Article  CAS  Google Scholar 

  • Cao Y-C et al (2015) Reduced graphene oxide supported titanium dioxide nanomaterials for the photocatalysis with long cycling life. Appl Surf Sci 355(Suppl C):1289–1294

    Article  CAS  Google Scholar 

  • Cardoso MJR, Lima MFS, Lenz DM (2007) Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Mater Res 10:425–429

    Article  CAS  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1):33–177

    Article  CAS  Google Scholar 

  • Chandra MR et al (2017) Hybrid copper doped titania/polythiophene nanorods as efficient visible light-driven photocatalyst for degradation of organic pollutants. J Asian Ceramic Soc 5:436–443

    Article  Google Scholar 

  • Chandrakanthi N, Careem MA (2000) Thermal stability of polyaniline. Polym Bull 44(1):101–108

    Article  CAS  Google Scholar 

  • Chang C-J, Wei Y-H, Huang K-P (2017) Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts. Int J Hydrog Energy 42(37):23578–23586

    Article  CAS  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  CAS  Google Scholar 

  • Chen D et al (2007) Carbon and nitrogen Co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46(9):2741–2746

    Article  CAS  Google Scholar 

  • Cho S, Choi W (2001) Solid-phase photocatalytic degradation of PVC–TiO2 polymer composites. J Photochem Photobiol A Chem 143(2):221–228

    Article  CAS  Google Scholar 

  • Choudhury B, Dey M, Choudhury A (2013) Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int Nano Lett 3(1):25

    Article  CAS  Google Scholar 

  • Chougulea MA et al (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 1:6–10

    Article  CAS  Google Scholar 

  • Chung K-H et al (2017) Development of hydrogen production by liquid phase plasma process of water with NiTiO2/carbon nanotube photocatalysts. Int J Hydrog Energy 43(11):5873–5880

    Article  CAS  Google Scholar 

  • Cojocaru B et al (2009) Synergism of activated carbon and undoped and nitrogen-doped TiO2 in the photocatalytic degradation of the chemical warfare agents Soman, VX, and Yperite. ChemSusChem 2(5):427–436

    Article  CAS  Google Scholar 

  • Dai K et al (2014) Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Appl Catal B Environ 156-157(Suppl C):331–340

    Article  CAS  Google Scholar 

  • Dey A et al (2004) Characterization and dielectric properties of polyaniline–TiO2 nanocomposites. Nanotechnology 15(9):1277

    Article  CAS  Google Scholar 

  • Dhanya A, Aparna K (2016) Synthesis and evaluation of TiO2/chitosan based hydrogel for the adsorptional photocatalytic degradation of azo and anthraquinone dye under UV light irradiation. Procedia Technol 24(Suppl C):611–618

    Article  Google Scholar 

  • Di Valentin C, Pacchioni G, Selloni A (2005) Theory of carbon doping of titanium dioxide. Chem Mater 17(26):6656–6665

    Article  CAS  Google Scholar 

  • Fabiyi ME, Skelton RL (2000) Photocatalytic mineralisation of methylene blue using buoyant TiO2-coated polystyrene beads. J Photochem Photobiol A Chem 132(1):121–128

    Article  CAS  Google Scholar 

  • Fostier AH et al (2008) Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles. Chemosphere 72(2):319–324

    Article  CAS  Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37

    Article  CAS  Google Scholar 

  • Gao B, Chen GZ, Li Puma G (2009) Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl Catal B Environ 89(3):503–509

    Article  CAS  Google Scholar 

  • Gar Alalm M, Tawfik A, Ookawara S (2016) Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J Environ Chem Eng 4(2):1929–1937

    Article  CAS  Google Scholar 

  • Gogate PR et al (2002) Mapping of sonochemical reactors: review, analysis, and experimental verification. Am Inst Chem Eng AICHE J 48(7):1542–1542

    Article  CAS  Google Scholar 

  • Grandcolas M, Ye J (2012) N-doped titania-based nanofiber thin films synthesized via a hydrothermal route and their photo-induced properties under visible light. J Ceram Process Res 13:65–70

    Google Scholar 

  • Guldi DM, Prato M (2000) Excited-state properties of C60 fullerene derivatives. Acc Chem Res 33(10):695–703

    Article  CAS  Google Scholar 

  • Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56(16):1639

    Article  CAS  Google Scholar 

  • Han H, Bai R (2010) Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights. Sep Purif Technol 73(2):142–150

    Article  CAS  Google Scholar 

  • Han F et al (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359(1):25–40

    Article  CAS  Google Scholar 

  • Hao W, James PL (2005) Effects of dopant states on photoactivity in carbon-doped TiO2. J Phys Condens Matter 17(21):L209

    Article  CAS  Google Scholar 

  • Hartley AC et al (2017) PMMA–titania floating macrospheres for the photocatalytic remediation of agro-pharmaceutical wastewater. Water Sci Technol 75(6):1362–1369

    Article  CAS  Google Scholar 

  • Hegedűs P et al (2017) Investigation of a TiO2 photocatalyst immobilized with poly(vinyl alcohol). Catal Today 284(Suppl C):179–186

    Article  CAS  Google Scholar 

  • Herrmann J-M et al (1999) Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catal Today 54(2):255–265

    Article  CAS  Google Scholar 

  • Hiroshi I, Yuka W, Kazuhito H (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett 32(8):772–773

    Article  Google Scholar 

  • Hoffmann MR et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  • Hsieh S-H, Ting J-M (2018) Characterization and photocatalytic performance of ternary Cu-doped ZnO/graphene materials. Appl Surf Sci 427(Part A):465–475

    Article  CAS  Google Scholar 

  • Huo P et al (2018) Fabricated Ag/Ag2S/reduced graphene oxide composite photocatalysts for enhancing visible light photocatalytic and antibacterial activity. J Ind Eng Chem 57(Suppl C):125–133

    Article  CAS  Google Scholar 

  • Ibhadon A, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189

    Article  CAS  Google Scholar 

  • Ida J et al (2016) Preparation of highly functionalized thermoresponsive composites containing TiO2/Fe3O4 nanoparticles. Polym Compos 37(8):2293–2300

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  • Jamal R et al (2013) Comparison of structure and electrochemical properties for PANI/TiO2/G and PANI/G composites synthesized by mechanochemical route. J Mater Res 28(6):832–839

    Article  CAS  Google Scholar 

  • Justh N et al (2017) Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition. Appl Surf Sci 419(Suppl C):497–502

    Article  CAS  Google Scholar 

  • Jyothi MS et al (2016) Aminated polysulfone/TiO2 composite membranes for an effective removal of Cr(VI). Chem Eng J 283(Suppl C):1494–1505

    Article  CAS  Google Scholar 

  • Jyothi MS et al (2017a) Sunlight active PSf/TiO2 hybrid membrane for elimination of chromium. J Photochem Photobiol A Chem 339(Suppl C):89–94

    Google Scholar 

  • Jyothi MS et al (2017b) Eco-friendly membrane process and product development for complete elimination of chromium toxicity in wastewater. J Hazard Mater 332(Suppl C):112–123

    CAS  Google Scholar 

  • Kalousek V et al (2017) Low-cost Ni-complex/graphitic carbon nitride photocatalyst for hydrogen evolution. Mater Lett 199(Suppl C):65–67

    Article  CAS  Google Scholar 

  • Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2(3):242–251

    Article  CAS  Google Scholar 

  • Kamat PV, Haria M, Hotchandani S (2004) C60 cluster as an electron shuttle in a Ru(II)-polypyridyl sensitizer-based photochemical solar cell. J Phys Chem B 108(17):5166–5170

    Article  CAS  Google Scholar 

  • Kavil J et al (2017) Polyaniline as photocatalytic promoter in black anatase TiO2. Sol Energy 158(Suppl C):792–796

    Article  CAS  Google Scholar 

  • Kelkar D, Chourasia A (2012) Effect of dopant on thermal properties of polythiophene. Indian J Phys 86(2):101–107

    Article  CAS  Google Scholar 

  • Kiran V, Sampath S (2013) Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties. Nanoscale 5(21):10646–10652

    Article  CAS  Google Scholar 

  • Kolouch A et al (2006) Relationship between photocatalytic activity, hydrophilicity and photoelectric properties of TiO2 thin films. Probl At Sci Technol 6(Plasma Physics (12)):198–200

    Google Scholar 

  • Krätschmer W et al (1990) Solid C60: a new form of carbon. Nature 347:354

    Article  Google Scholar 

  • Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34(8):1053–1060

    Article  CAS  Google Scholar 

  • Kumar KD, Kumar GP, Reddy KS (2015) Rapid microwave synthesis of reduced graphene oxide–supported TiO2 nanostructures as high performance photocatalyst. Mater Today Proc 2(4):3736–3742

    Article  Google Scholar 

  • Kumar KVA et al (2017) Simultaneous photocatalytic degradation of p-cresol and Cr(VI) by metal oxides supported reduced graphene oxide. Mol Catal 451:87–95

    Article  CAS  Google Scholar 

  • Kwon CH et al (2004) Degradation of methylene blue via photocatalysis of titanium dioxide. Mater Chem Phys 86(1):78–82

    Article  CAS  Google Scholar 

  • Lai C et al (2010) Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries. Electrochim Acta 55(15):4567–4572

    Article  CAS  Google Scholar 

  • Langlet M et al (2002) Sol–gel preparation of photocatalytic TiO2 films on polymer substrates. J Sol-Gel Sci Technol 25(3):223–234

    Article  CAS  Google Scholar 

  • Li W (2013) Photocatalysis of oxide semiconductors. J Aust Ceram Soc 49(2):41–46

    CAS  Google Scholar 

  • Li X et al (2008) Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl Catal B Environ 81(3):267–273

    Article  CAS  Google Scholar 

  • Li J et al (2011) Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chem Phys Lett 514(1):141–145

    Article  CAS  Google Scholar 

  • Li L et al (2012) Carbon heterogeneous surface modification on a mesoporous TiO2-supported catalyst and its enhanced hydrodesulfurization performance. Chem Commun 48(94):11525–11527

    Article  CAS  Google Scholar 

  • Li Y, Zhao H, Yang M (2017a) TiO2 nanoparticles supported on PMMA nanofibers for photocatalytic degradation of methyl orange. J Colloid Interface Sci 508(Suppl C):500–507

    Article  CAS  Google Scholar 

  • Li X et al (2017b) CdS nanoparticles loaded on porous poly-melamine–formaldehyde polymer for photocatalytic dye degradation. Res Chem Intermed 43(9):5083–5090

    Article  CAS  Google Scholar 

  • Li Y-S et al (2017c) Controlled preparation and highly photocatalytic activity of portable MCC-g-GMA@TiO2 photocatalyst by pre-radiation grafting–embedding method. Appl Catal B Environ 218(Suppl C):101–110

    Article  CAS  Google Scholar 

  • Li Y et al (2017d) Preparation of environment-friendly 3D eggshell membrane-supported anatase TiO2 as a reusable photocatalyst for degradation of organic dyes. Chem Phys Lett 689(Suppl C):142–147

    Article  CAS  Google Scholar 

  • Liao G et al (2011) Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Appl Catal B Environ 102(1–2):126–131

    Article  CAS  Google Scholar 

  • Lin X et al (2011) Carbon-doped mesoporous TiO2 film and its photocatalytic activity. Microporous Mesoporous Mater 142(1):276–281

    Article  CAS  Google Scholar 

  • Lin C et al (2013) Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale 5(11):4986–4992

    Article  CAS  Google Scholar 

  • Lin H et al (2017) Graphitic carbon nitride–supported iron oxides: high-performance photocatalysts for the visible-light-driven degradation of 4-nitrophenol. J Photochem Photobiol A Chem 336(Suppl C):105–114

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  • Liu R, Liu Z (2009) Polythiophene: synthesis in aqueous medium and controllable morphology. Chin Sci Bull 54:2028–2032

    CAS  Google Scholar 

  • Liu Z et al (2006) An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett 7(4):1081–1085

    Article  CAS  Google Scholar 

  • Liu SX, Chen XY, Chen X (2007) A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J Hazard Mater 143(1):257–263

    Article  CAS  Google Scholar 

  • Liu X et al (2012) UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem Eng J 183(Suppl C):238–243

    Article  CAS  Google Scholar 

  • Liu J et al (2017) Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Appl Catal B Environ 202(Suppl C):642–652

    CAS  Google Scholar 

  • Magalhães F, Lago RM (2009) Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes. Sol Energy 83(9):1521–1526

    Article  CAS  Google Scholar 

  • Magalhães F, Moura FCC, Lago RM (2011) TiO2/LDPE composites: a new floating photocatalyst for solar degradation of organic contaminants. Desalination 276(1):266–271

    Article  CAS  Google Scholar 

  • Makarova TL (2001) Electrical and optical properties of pristine and polymerized fullerenes. Semiconductors 35(3):243–278

    Article  CAS  Google Scholar 

  • Martins AC et al (2017) Sol–gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram Int 43(5):4411–4418

    Article  CAS  Google Scholar 

  • Matsuoka M et al (2007) Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catal Today 122(1):51–61

    Article  CAS  Google Scholar 

  • Meng Z-D et al (2012) Synthesis and characterization of M-fullerene/TiO2 photocatalysts designed for degradation azo dye. Mater Sci Eng C 32(8):2175–2182

    Article  CAS  Google Scholar 

  • Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108(1):1–35

    Article  CAS  Google Scholar 

  • Mohammad F, Calvert PD, Billingham NC (1995) Thermal stability of electrochemically prepared polythiophene and polypyrrole. Bull Mater Sci 18(3):255–261

    Article  CAS  Google Scholar 

  • Mou Z et al (2014) TiO2 nanoparticles–functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation. ACS Appl Mater Interfaces 6(16):13798–13806

    Article  CAS  Google Scholar 

  • Mungondori HH, Tichagwa L, Katwire DM (2016) Removal of Pb2+ and Fe3+ from water using N–TiO2 blended copolymer grafted asymmetric membranes. Water Sci Technol 73(8):1855–1864

    Article  CAS  Google Scholar 

  • Murugan E, Rangasamy R (2011) Development of stable pollution free TiO2/Au nanoparticle immobilized green photo catalyst for degradation of methyl orange. J Biomed Nanotechnol 7(1):225–228

    Article  CAS  Google Scholar 

  • Nabid MR et al (2013) Preparation of new magnetic nanocatalysts based on TiO2 and ZnO and their application in improved photocatalytic degradation of dye pollutant under visible light. Photochem Photobiol 89(1):24–32

    Article  CAS  Google Scholar 

  • Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13(3):169–189

    Article  CAS  Google Scholar 

  • Nakata K et al (2012) Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochim Acta 84(Suppl C):103–111

    Article  CAS  Google Scholar 

  • Ni M et al (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11(3):401–425

    Article  CAS  Google Scholar 

  • Nitnithiphrut P, Thabuot M, Seithtanabutara V (2017) Fabrication of composite supercapacitor containing para wood-derived activated carbon and TiO2. Energy Procedia 138(Suppl C):116–121

    Article  CAS  Google Scholar 

  • Nouri E, Mohammadi MR, Lianos P (2016) Impact of preparation method of TiO2–rGO nanocomposite photoanodes on the performance of dye-sensitized solar cells. Electrochim Acta 219(Suppl C):38–48

    Article  CAS  Google Scholar 

  • Ooyama Y et al (2011) Dye-sensitized solar cells based on donor–acceptor π-conjugated fluorescent dyes with a pyridine ring as an electron-withdrawing anchoring group. Angew Chem Int Ed 50(32):7429–7433

    Article  CAS  Google Scholar 

  • Orfanopoulos M, Kambourakis S (1994) Fullerene C60 and C70 photosensitized oxygenation of olefins. Tetrahedron Lett 35(12):1945–1948

    Article  CAS  Google Scholar 

  • Orikasa H et al (2007) Crystal formation and growth during the hydrothermal synthesis of [small beta]-Ni(OH)2 in one-dimensional nano space. Dalton Trans 0(34):3757–3762

    Article  CAS  Google Scholar 

  • Ozawa K et al (2016) Capturing transiently charged states at the C60/TiO2(110) interface by time-resolved soft X-ray photoelectron spectroscopy. Org Electron 31(Suppl C):98–103

    Article  CAS  Google Scholar 

  • Park Y et al (2009) Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B Environ 91(1):355–361

    Article  CAS  Google Scholar 

  • Park H et al (2016) Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ Sci 9(2):411–433

    Article  CAS  Google Scholar 

  • Perera SD et al (2012) Hydrothermal synthesis of graphene–TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2(6):949–956

    Article  CAS  Google Scholar 

  • Petroff Ii JT et al (2017) Enhanced photocatalytic dehalogenation of aryl halides by combined poly-p-phenylene (PPP) and TiO2 photocatalysts. J Photochem Photobiol A Chem 335(Suppl C):149–154

    Article  CAS  Google Scholar 

  • Pirkanniemi K, Sillanpää M (2002) Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 48(10):1047–1060

    Article  CAS  Google Scholar 

  • Reddy KR et al (2010) Nanofibrous TiO2-core/conjugated polymer-sheath composites: synthesis, structural properties and photocatalytic activity. J Nanosci Nanotechnol 10(12):7951–7957

    Article  CAS  Google Scholar 

  • Reddy KR et al (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120(Suppl C):169–174

    Article  CAS  Google Scholar 

  • Ren W et al (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B Environ 69(3):138–144

    Article  CAS  Google Scholar 

  • Robertson PKJ (1996) Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process. J Clean Prod 4(3):203–212

    Article  Google Scholar 

  • Roonasi P, Mazinani M (2017) Synthesis and application of barium ferrite/activated carbon composite as an effective solar photocatalyst for discoloration of organic dye contaminants in wastewater. J Environ Chem Eng 5(4):3822–3827

    Article  CAS  Google Scholar 

  • Rosu M-C et al (2017) Azo dyes degradation using TiO2–Pt/graphene oxide and TiO2–Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Sci 70(Suppl C):13–20

    Article  CAS  Google Scholar 

  • Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108(50):19384–19387

    Article  CAS  Google Scholar 

  • Santos HM, Lodeiro C, Capelo-Martínez J-L (2009) The power of ultrasound. In: Capelo‐Martínez JL (ed) Ultrasound in chemistry: analytical applications. Wiley, Weinheim, pp 1–16

    Google Scholar 

  • Sboui M et al (2017) TiO2–PANI/cork composite: a new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation. J Environ Sci 60(Suppl C):3–13

    Article  Google Scholar 

  • ScienceLab.com (2005a) Aniline material safety data sheet. ScienceLab.com, Houston

    Google Scholar 

  • ScienceLab.com (2005b) Thiophene material safety data sheet. ScienceLab.com, Houston

    Google Scholar 

  • ScienceLab.com (2012) Pyrrole material safety data sheet. ScienceLab.com, Houston

    Google Scholar 

  • Senthilkumar B, Thenamirtham P, Kalai Selvan R (2011) Structural and electrochemical properties of polythiophene. Appl Surf Sci 257(21):9063–9067

    Article  CAS  Google Scholar 

  • Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 253(2):337–358

    Article  CAS  Google Scholar 

  • Shan AY, Ghazi TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A Gen 389(1):1–8

    Article  CAS  Google Scholar 

  • Sharma A, Lee B-K (2017) Growth of TiO2 nano-wall on activated carbon fibers for enhancing the photocatalytic oxidation of benzene in aqueous phase. Catal Today 287(Suppl C):113–121

    Article  CAS  Google Scholar 

  • Shende TP et al (2018) Sonochemical synthesis of graphene–Ce–TiO2 and graphene–Fe–TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye. Ultrason Sonochem 41(Suppl C):582–589

    Article  CAS  Google Scholar 

  • Shi J (2013) On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev 113(3):2139–2181

    Article  CAS  Google Scholar 

  • Sibley SP, Argentine SM, Francis AH (1992) A photoluminescence study of C60 and C70. Chem Phys Lett 188(3):187–193

    Article  CAS  Google Scholar 

  • Sigma-Aldrich (2013a) Aniline ACS reagent, ≥99.5%. https://www.sigmaaldrich.com/catalog/product/sial/242284?lang=en&region=US. Accessed 2017

  • Sigma-Aldrich (2013b) Thiophene >99%. https://www.sigmaaldrich.com/catalog/product/aldrich/t31801?lang=en&region=US. Accessed 2017

  • Sigma-Aldrich (2013c) Pyrrole reagent grade, 98%. https://www.sigmaaldrich.com/catalog/product/aldrich/131709?lang=en&region=US. Accessed 2017

  • Singh P et al (2016) Photocatalytic degradation of acid red dye stuff in the presence of activated carbon–TiO2 composite and its kinetic enumeration. J Water Process Eng 12(Suppl C):20–31

    Article  Google Scholar 

  • Song X et al (2016) Solvent-free in situ synthesis of g-C3N4/{001}TiO2 composite with enhanced UV- and visible-light photocatalytic activity for NO oxidation. Appl Catal B Environ 182:587–597

    Article  CAS  Google Scholar 

  • Starr BJ et al (2016) Coating porous membranes with a photocatalyst: comparison of LbL self-assembly and plasma-enhanced CVD techniques. J Membr Sci 514(Suppl C):340–349

    Article  CAS  Google Scholar 

  • Steplin Paul Selvin S et al (2017) Photocatalytic degradation of rhodamine B using cysteine capped ZnO/P(3HB-co-3HHx) fiber under UV and visible light irradiation. React Kinet Mech Catal 122(1):671–684

    Article  CAS  Google Scholar 

  • Sun H et al (2006) Preparation and characterization of visible-light-driven carbon–sulfur-codoped TiO2 photocatalysts. Ind Eng Chem Res 45(14):4971–4976

    Article  CAS  Google Scholar 

  • Tachikawa T et al (2004) Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J Phys Chem B 108(50):19299–19306

    Article  CAS  Google Scholar 

  • Takeda N et al (1995) Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J Phys Chem 99(24):9986–9991

    Article  CAS  Google Scholar 

  • Solid State Technology (2011) Graphene races CNT for nanomaterial commercialization. https://electroiq.com/2011/09/graphene-races-cnt-for-nanomaterial-commercialization/. Accessed 2019 Feb 12

  • Tennakone K, Tilakaratne CTK, Kottegoda IRM (1995) Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. J Photochem Photobiol A Chem 87(2):177–179

    Article  CAS  Google Scholar 

  • Teoh WY, Scott JA, Amal R (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3(5):629–639

    Article  CAS  Google Scholar 

  • Terazima M et al (1991) Photothermal investigation of the triplet state of carbon molecule (C60). J Phys Chem 95(23):9080–9085

    Article  CAS  Google Scholar 

  • Tierney, J.P. and P. Lidström (eds). Microwave assisted organic synthesis. 2005, Oxford: Blackwell. p. 133–134

    Book  Google Scholar 

  • Trapalis A et al (2016) TiO2/graphene composite photocatalysts for NOx removal: a comparison of surfactant-stabilized graphene and reduced graphene oxide. Appl Catal B Environ 180(Suppl C):637–647

    Article  CAS  Google Scholar 

  • Tryba B, Morawski AW, Inagaki M (2003) Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl Catal B Environ 41(4):427–433

    Article  CAS  Google Scholar 

  • Ueda T et al (2009) Preparation of single-walled carbon nanotube/TiO2 hybrid atmospheric gas sensor operated at ambient temperature. Diam Relat Mater 18(2):493–496

    Article  CAS  Google Scholar 

  • Vinoth R et al (2017) Bismuth oxyiodide incorporated reduced graphene oxide nanocomposite material as an efficient photocatalyst for visible light assisted degradation of organic pollutants. Appl Surf Sci 418(Part A):163–170

    Article  CAS  Google Scholar 

  • Wang C-C, Ying JY (1999) Sol–gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem Mater 11(11):3113–3120

    Article  CAS  Google Scholar 

  • Wang H et al (2009) Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res 43(1):204–210

    Article  CAS  Google Scholar 

  • Wang X et al (2016) Activated carbon-based magnetic TiO2 photocatalyst codoped with iodine and nitrogen for organic pollution degradation. Appl Surf Sci 390(Suppl C):190–201

    CAS  Google Scholar 

  • Wang Q et al (2017a) Preparation of carbon spheres supported CdS photocatalyst for enhancement its photocatalytic H2 evolution. Catal Today 281(Part 3):662–668

    Article  CAS  Google Scholar 

  • Wang L et al (2017b) Silver chloride enwrapped silver grafted on nitrogen-doped reduced graphene oxide as a highly efficient visible-light-driven photocatalyst. J Colloid Interface Sci 505(Suppl C):421–429

    Article  CAS  Google Scholar 

  • Wang Z et al (2017c) Bi metal sphere/graphene oxide nanohybrids with enhanced direct plasmonic photocatalysis. Appl Catal B Environ 214(Suppl C):148–157

    Article  CAS  Google Scholar 

  • Wei W et al (2013) Improvement of the visible-light photocatalytic performance of TiO2 by carbon mesostructures. Chem Eur J 19(2):566–577

    Article  CAS  Google Scholar 

  • Xie Q, Perez-Cordero E, Echegoyen L (1992) Electrochemical detection of C60 6− and C70 6−: enhanced stability of fullerides in solution. J Am Chem Soc 114(10):3978–3980

    Article  CAS  Google Scholar 

  • Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49(4):89–112

    Article  CAS  Google Scholar 

  • Xu S et al (2011) Structure and photocatalytic activity of polythiophene/TiO2 composite particles prepared by photoinduced polymerization. Chin J Catal 32(3–4):536–545

    Article  CAS  Google Scholar 

  • Yan Q-L et al (2016) Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 8(9):4799–4851

    Article  CAS  Google Scholar 

  • Yang M-Q, Zhang N, Xu Y-J (2013) Synthesis of fullerene–, carbon nanotube–, and graphene–TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Appl Mater Interfaces 5(3):1156–1164

    Article  CAS  Google Scholar 

  • Yao Y et al (2008) Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 42(13):4952–4957

    Article  CAS  Google Scholar 

  • Yun J-H et al (2012) Combined electrophoretic deposition–anodization method to fabricate reduced graphene oxide–TiO2 nanotube films. RSC Adv 2(21):8164–8171

    Article  CAS  Google Scholar 

  • Yuranova T et al (2004) Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Appl Catal B Environ 49(1):39–50

    Article  CAS  Google Scholar 

  • Zhang H et al (2008) Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ Sci Technol 42(10):3803–3807

    Article  CAS  Google Scholar 

  • Zhang H et al (2010a) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386

    Article  CAS  Google Scholar 

  • Zhang Y et al (2010b) TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from other TiO2–carbon composite materials? ACS Nano 4(12):7303–7314

    Article  CAS  Google Scholar 

  • Zhang Y et al (2011) Engineering the unique 2D mat of graphene to achieve graphene–TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5(9):7426–7435

    Article  CAS  Google Scholar 

  • Zhang G et al (2013a) Preparation of carbon–TiO2 nanocomposites by a hydrothermal method and their enhanced photocatalytic activity. RSC Adv 3(46):24644–24649

    Article  CAS  Google Scholar 

  • Zhang L et al (2013b) Facile fabrication and characterization of multi-type carbon-doped TiO2 for visible light–activated photocatalytic mineralization of gaseous toluene. J Mater Chem A 1(14):4497–4507

    Article  CAS  Google Scholar 

  • Zhang J et al (2015) Study on stability of poly(3-hexylthiophene)/titanium dioxide composites as a visible light photocatalyst. Appl Surf Sci 349(Suppl C):650–656

    Article  CAS  Google Scholar 

  • Zheng Y, Zhang Z, Li C (2016) Beta-FeOOH-supported graphitic carbon nitride as an efficient visible light photocatalyst. J Mol Catal A Chem 423(Suppl C):463–471

    Article  CAS  Google Scholar 

  • Zhiyong Y et al (2008) Flexible polymer TiO2 modified film photocatalysts active in the photodegradation of azo-dyes in solution. Inorg Chim Acta 361(3):589–594

    Article  CAS  Google Scholar 

  • Zhou F-L, Gong R-H, Porat I (2009) Polymeric nanofibers via flat spinneret electrospinning. Polym Eng Sci 49(12):2475–2481

    Article  CAS  Google Scholar 

  • Zhu B, Zou L (2009) Trapping and decomposing of color compounds from recycled water by TiO2 coated activated carbon. J Environ Manag 90(11):3217–3225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, K.R., Jyothi, M.S., Raghu, A.V., Sadhu, V., Naveen, S., Aminabhavi, T.M. (2020). Nanocarbons-Supported and Polymers-Supported Titanium Dioxide Nanostructures as Efficient Photocatalysts for Remediation of Contaminated Wastewater and Hydrogen Production. In: Inamuddin, Asiri, A., Lichtfouse, E. (eds) Nanophotocatalysis and Environmental Applications . Environmental Chemistry for a Sustainable World, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-12619-3_6

Download citation

Publish with us

Policies and ethics