Skip to main content
Log in

Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Brazilian berry seeds (Eugenia uniflora) were used as an eco-friendly and low-cost biosorbent for the treatment of textile effluents containing methylene blue. Characterization techniques indicated that Brazilian berry seeds are constituted of irregular particles, mainly composed of lignin and holocellulose groups, distributed in an amorphous structure. Methylene blue biosorption was favorable at pH of 8, using a biosorbent dosage of 0.8 g L−1. The equilibrium was reached in the first 20 min for lower M methylene blue concentrations and 120 min for higher methylene blue concentrations. Furthermore, the general and pseudo-second-order models were suitable for describing the kinetic data. Langmuir was the most adequate model for describing the isotherm curves, predicting a biosorption capacity of 189.6 mg g−1 at 328 K. Biosorption was spontaneous (− 9.54 ≤ ΔG0 ≤ −8.06 kJ mol−1) and endothermic, with standard enthalpy change of 6.11 kJ mol−1. Brazilian berry seeds were successfully used to remove the color of two different simulated textile effluents, achieving 92.2% and 73.5% of removal. Last, the fixed-bed experiment showed that a column packed with Brazilian berry seeds can operate during 840 min, attaining biosorption capacity of 88.7 mg g−1. The data here presented indicates that textile effluents containing methylene blue can be easily and successfully treated by an eco-friendly and low-cost biosorbent like Brazilian berry seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdulla NK, Siddiqui SI, Tara N, Hashmi AA, Chaudhry SA (2019) Psidium guajava leave–based magnetic nanocomposite γ-Fe2O3@GL: a green technology for methylene blue removal from water. J Environ Chem Eng 7:103423

    CAS  Google Scholar 

  • Amorim ACL, Lima CKF, Hovell AMC, Miranda ALP, Rezende CM (2009) Antinociceptive and hypothermic evaluation of the leaf essential oil and isolated terpenoids from Eugenia uniflora L. (Brazilian Pitanga). Phytomedicine 16:923–928

    CAS  Google Scholar 

  • Babalola JO, Koiki BA, Eniayewu Y, Salimonu A, Olowoyo JO, Oninla VO, Omorogie MO (2016) Adsorption efficacy of Cedrela odorata seed waste for dyes: non-linear fractal kinetics and non-linear equilibrium studies. J Environ Chem Eng 4:3527–3536

    CAS  Google Scholar 

  • Bazzo A, Adebayo MA, Dias SLP, Lima EC, Vaghetti JCP, de Oliveira ER, Pavan FA (2015) Avocado seed powder: characterization and its application for crystal violet dye removal from aqueous solutions. Desalin Water Treat 57:15873–15888

    Google Scholar 

  • Bohart GS, Adams EQ (1920) Some aspects of the behavior of charcoal with respect to chlorine. J Amer Chem Soc 42:523–544

    CAS  Google Scholar 

  • Bretanha MS, Rochefort MC, Dotto GL, Lima EC, Dias SLP, Pavan FA (2014) Punica granatum husk (PGH), a powdered biowaste material for the adsorption of methylene blue dye from aqueous solution. Desalin Water Treat 57:3194–3204

    Google Scholar 

  • Bulut Y, Aydın H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194:259–267

    CAS  Google Scholar 

  • Cao JS, Lin JX, Fang F, Zhang MT, Hu Z (2014) A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies. Bioresour Technol 163:199–205

    CAS  Google Scholar 

  • Carvalho CDO, Costa Rodrigues DL, Lima EC, Umpierres CS, Caicedo Chaguez DF, Machado FM (2019) Kinetic, equilibrium, and, thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jeriva (Syagrus romanzoffiana). Environ Sci Pollut Res 26:4690–4702

  • Catanho M, Malpass GRP, Motheo AJ (2006) Evaluation of electrochemical and photoelectrochemical treatments in the degradation of textile dyes. New Chemistry 29:983–989

    CAS  Google Scholar 

  • Chen H (2014) Biotechnology of lignocellulose. Springer

  • Crank J (1975) The mathematics of diffusion. Oxford Science Publications

  • Dahri MK, Kooh MRR, Lim LBL (2014) Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. J Environ Chem Eng 2:1434–1444

    CAS  Google Scholar 

  • Dávila–Jiménez MM, Elizalde–González MP, Hernández–Montoya V (2009) Performance of mango seed adsorbents in the adsorption of anthraquinone and azo acid dyes in single and binary aqueous solutions. Bioresour Technol 100:6199–6206

    Google Scholar 

  • Fan H, Zhou L, Jiang X, Huang Q, Lang W (2014) Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Appl Clay Sci 95:150–158

    CAS  Google Scholar 

  • Fatima B, Siddiqui SI, Ahmed R, Chaudhry SA (2019) Green synthesis of f-CdWO4 for photocatalytic degradation and adsorptive removal of Bismarck Brown R dye from water. Water Res Ind 22:100119

    Google Scholar 

  • Fontana KB, Chaves ES, Sanchez JDS, Watanabe ERLR, Pietrobelli JMTA, Lenzi GG (2016) Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies. Ecotoxicol Environ Saf 124:329–336

    CAS  Google Scholar 

  • Franca AS, Oliveira LS, Ferreira ME (2009) Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249:267–272

    CAS  Google Scholar 

  • Franco DSP, Duarte FA, Salau NPG, Dotto GL (2019) Adaptive neuro–fuzzy inference system (ANIFS) and artificial neural network (ANN ) applied for indium (III) adsorption on carbonaceous materials. Chem Eng Commun 206:1452–1462

    Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  • Georgin J, Drumm FC, Grassi P, Franco D, Allasia D, Dotto GL (2018a) Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents. Water Sci Technol 78:1693–1703

    CAS  Google Scholar 

  • Georgin J, Marques BS, Peres EC, Allasia D, Dotto GL (2018b) Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa). Water Sci Technol 77:1612–1621

    CAS  Google Scholar 

  • Georgin J, Franco DSP, Drumm FC, Grassi P, Schadeck Netto M, Allasia D, Dotto GL (2019a) Paddle cactus (Tacinga palmadora) as potential low–cost adsorbent to treat textile effluents containing crystal violet. Chem Eng Commun in press:1–12. https://doi.org/10.1080/00986445.2019.1650033

  • Georgin J, Franco DSP, Grassi P, Tonato D, Piccilli DGA, Meili L, Dotto GL (2019b) Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents. Environ Sci Pollut Res 26:19207–19219

    CAS  Google Scholar 

  • Ghaedi M, Mazaheri H, Khodadoust S, Hajati S, Purkait MK (2015) Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochim Acta A: Mol Biomol Spectroscopy 135:479–490

    CAS  Google Scholar 

  • Ghosh D, Bhattacharyya KG (2002) Adsorption of methylene blue on kaolinite. Appl Clay Sci 20:295–300

    CAS  Google Scholar 

  • Hameed BH, Ahmad AA (2009) Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J Hazard Mater 164:870–875

    CAS  Google Scholar 

  • Hameed BH, Tan IAW, Ahmad AL (2008) Adsorption isotherm, kinetic modeling and mechanism of 2,4,6–trichlorophenol on coconut husk-based activated carbon. Chem Eng J 144:235–244

    CAS  Google Scholar 

  • Hernandes PT, Oliveira MLS, Georgin J, Franco DSP, Allasia D, Dotto GL (2019) Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus). Environ Sci Pollut Res 26:31924–31933

    CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo–second order model for sorption processes. Process Biochem 34:451–465

    CAS  Google Scholar 

  • Honorato AC, Machado JM, Celante G, Borges WGP, Dragunski DC, Caetano J (2015) Methylene blue biosorption using agroindustrial residues. Brazilian J Agric Environ Eng 19:705–710

    Google Scholar 

  • Kebede TG, Mengistie AA, Dube S, Nkambule TTI, Nindi MM (2018) Study on adsorption of some common metal ions present in industrial effluents by Moringa stenopetala seed powder. J Environ Chem Eng 6:1378–1389

    CAS  Google Scholar 

  • Khan AR, Al–Wahea IR, Al–Haddad A (1996) A generalized equation for adsorption isotherms for multi–component organic pollutants in dilute aqueous solution. Environ Technol 17:13–23

    CAS  Google Scholar 

  • Lagergren S (1898) Zur Theorie der Sogenannten Adsorption Gelöster Stoffe. Kung Svenska Vetenskap 24:1–39

    Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Amer Chem Soc 40:1361–1403

    CAS  Google Scholar 

  • Lima EC, Hosseini–Bandegharaei A, Moreno–Piraján JC, Anastopoulos T (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

    CAS  Google Scholar 

  • Lima I, Oliveira R, Lima E, Farias NMP, Souza EL (2006) Antifungal activity of essential oils on Candida species. Brazilian J Pharm 16:197–201

    Google Scholar 

  • Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem Eng J 38:390–394

    CAS  Google Scholar 

  • Meili L, da Silva TS, Henrique DC, Soletti JI, de Carvalho SHV, Fonseca EJ, Dotto GL (2016) Ouricuri (Syagrus coronata) fiber: a novel biosorbent to remove methylene blue from aqueous solutions. Water Sci Technol 75:106–114

    Google Scholar 

  • Meili L, Lins PVS, Costa MT, Almeida RL, Abud AKS, Soletti JI, Erto A (2019) Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling. Prog Biophys Mol Biol 141:60–71

    CAS  Google Scholar 

  • Mohebali S, Bastani D, Shayesteh H (2018) Methylene blue removal using modified celery (Apium graveolens) as a low-cost biosorbent in batch mode: kinetic, equilibrium, and thermodynamic studies. J Mol Struct 1173:541–551

    CAS  Google Scholar 

  • Munagapati VS, Yarramuthi V, Kim Y, Lee KM, Kim DS (2018) Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicol Environ Saf 148:601–607

    CAS  Google Scholar 

  • Neupane S, Ramesh ST, Gandhimathi R, Nidheesh PV (2014) Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution. Desalin Water Treat 54:2041–2054

    Google Scholar 

  • Pavan FA, Lima EC, Dias SL, Mazzocato AC (2008) Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J Hazard Mater 150:703–712

    CAS  Google Scholar 

  • Postai DL, Demarchi CA, Zanatta F, Melo DCC, Rodrigues CA (2016) Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent. Alexandria Eng J 55:1713–1723

    Google Scholar 

  • Salem NM, Awwad AM (2014) Biosorption of Ni(II) from electroplating wastewater by modified (Eriobotrya japonica) loquat bark. J Saudi Chem Soc 18:379–386

    CAS  Google Scholar 

  • Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13

    CAS  Google Scholar 

  • Sen TK, Afroze S, Ang HM (2010) Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut 218:499–515

    Google Scholar 

  • Siddiqui SI, Rathi G, Chaudhry SA (2018) Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: thermodynamic, kinetic and isotherm studies. J Mol Liq 264:275–284

    CAS  Google Scholar 

  • Siddiqui SI, Chaudhry SA (2019) Nanohybrid composite Fe2O3–ZrO2/BC for inhibiting the growth of bacteria and adsorptive removal of arsenic and dyes from water. J Clean Prod 223:849–868

    CAS  Google Scholar 

  • Siddiqui SI, Zohra F, Chaudhry SA (2019) Nigella sativa seed based nanohybrid composite-Fe2O3-SnO2/BC: a novel material for enhanced adsorptive removal of methylene blue from water. Environ Res 178:108667

    CAS  Google Scholar 

  • Somsesta N, Sricharoenchaikul V, Aht–Ong D (2020) Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater Chem Phys 240:122221

    CAS  Google Scholar 

  • Suzuki M (1990) Adsorption engineering. Kodansha, Tokyo

    Google Scholar 

  • Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Amer Chem Soc 66:1664–1666

    CAS  Google Scholar 

  • Tran HN, You SJ, Hosseini–Bandegharaei A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

    CAS  Google Scholar 

  • Uddin MT, Rahman MA, Rukanuzzaman M, Islam MA (2017) A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions. Appl Water Sci 7:2831–2842

    CAS  Google Scholar 

  • Üner O (2019) Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax. Mater Chem Phys 237:121858

    Google Scholar 

  • Vikrant K, Kim KH (2019) Nanomaterials for the adsorptive treatment of Hg(II) ions from water. Chem Eng J 358:264–282

    CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng ASCE 89:31–59

    Google Scholar 

  • Weber WJ, Smith EH (1987) Simulation and design models for adsorption processes. Environ Sci Technol 21:1040–1050

    CAS  Google Scholar 

  • Xu Z, Wang Q, Jiang Z, Yang X, Ji Y (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy 31:162–167

    CAS  Google Scholar 

  • Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interf Sci 209:172–184

    CAS  Google Scholar 

  • Yagub MT, Sen TK, Ang M (2013) Removal of cationic dye methylene blue (MB) from aqueous solution by ground raw and base modified pine cone powder. Environ Earth Sci 71:1507–1519

    Google Scholar 

  • Yang J, Qiu K (2010) Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem Eng J 165:209–217

    CAS  Google Scholar 

  • Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16:1193–1226

    CAS  Google Scholar 

  • Yoon YH, Nelson JH (1984) Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life. Amer Ind Hyg Assoc J 45:509–516

    CAS  Google Scholar 

  • Zhang Y, Liu J, Du X, Shao W (2019) Preparation of reusable glass hollow fiber membranes and methylene blue adsorption. J Eur Ceram Soc 39:4891–4900

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcos L. S. Oliveira or Guilherme Luiz Dotto.

Additional information

Editorial Responsibility: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgin, J., Franco, D.S.P., Netto, M.S. et al. Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environ Sci Pollut Res 27, 20831–20843 (2020). https://doi.org/10.1007/s11356-020-08496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08496-8

Keywords

Navigation