Skip to main content

Advertisement

Log in

Enhanced removal of acid dye under visible light using CNT-modified photocatalyst coated onto PU foam

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

In the present study, the N-TiO2/PANI modified with CNTs was immobilized on the polyurethane (PU) foam and the effect of PU foam as support and CNTs as binder were investigated in terms of photodegradation of Acid Red 73 under visible light. The surface characteristics and optical properties of the as-prepared film were studied based on X-ray diffraction, Brunauer–Emmett–Teller surface, field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR) and diffuse reflectance spectroscopy (DRS) analysis. FT-IR results detected the existence of –COCl on CNTs in the film which can react with the functional groups (–NH–) on the PANI/TiO2 surface. This can be beneficial for durability of photocatalyst film, as confirmed by FESEM images. Moreover, the presence of carbon in the composite structure leads to the increased surface area and porosity which have contribution to the enhanced photocatalytic performance of the modified sample. Based on DRS analysis, the as-prepared samples exhibit the absorption light into the visible region mainly due to the PANI presence. The proposed mechanism shows that the PANI plays a major role in the enhanced charge separation at the titania surface. Photoactivity evaluation shows the higher efficiency for dye degradation using the N–TiO2/PANI/CNTs film comparing to the slurry system which can be attributed to macroporous structure of PU foam as support improving the light penetration and the catalyst interaction with the contaminate molecules. The durability and reasonable photocatalytic performance of the as-prepared film makes to consider it as a favorable alternative for the practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chavan A, Fulekar MH (2020) Enhanced degradation efficiency of mixed industrial effluent by modified nanocomposite photocatalyst under UVLED irradiation. Nanotechnol Environ Eng 5:5. https://doi.org/10.1007/s41204-020-0069-z

    Article  Google Scholar 

  2. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13:169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  Google Scholar 

  3. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/cr5001892

    Article  Google Scholar 

  4. Guo Q, Zhou C, Ma Z, Yang X (2019) Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 31:1901997. https://doi.org/10.1002/adma.201901997

    Article  Google Scholar 

  5. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241. https://doi.org/10.1021/jp204364a

    Article  Google Scholar 

  6. Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146. https://doi.org/10.1016/j.watres.2015.04.038

    Article  Google Scholar 

  7. Wen J, Li X, Liu W, Fang Y, Xie J, Xu Y (2015) Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese J Catal 36:2049–2070. https://doi.org/10.1016/S1872-2067(15)60999-8

    Article  Google Scholar 

  8. Youssef Z, Colombeau L, Yesmurzayeva N, Baros F, Vanderesse R, Hamieh T, Toufaily J, Frochot C, Roques-Carmes T, Acherar S (2018) Dye-sensitized nanoparticles for heterogeneous photocatalysis: Cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes Pigm 159:49–71. https://doi.org/10.1016/j.dyepig.2018.06.002

    Article  Google Scholar 

  9. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244. https://doi.org/10.1039/C4CS00126E

    Article  Google Scholar 

  10. Hashem E-H, Fahmy A, Abbas A, Tarek M, Mahran B, Ahmed MA (2020) Fabrication of novel AgIO4/TiO2 heterojunction for photocatalytic hydrogen production through direct Z-scheme mechanism. Nanotechnol Environ Eng 5:17. https://doi.org/10.1007/s41204-020-00081-1

    Article  Google Scholar 

  11. Baruah M, Supong A, Bhomick PC, Karmaker R, Pongener C, Sinha D (2020) Batch sorption–photodegradation of Alizarin Red S using synthesized TiO2/activated carbon nanocomposite: an experimental study and computer modelling. Nanotechnol Environ Eng 5:8. https://doi.org/10.1007/s41204-020-00071-3

    Article  Google Scholar 

  12. Abbas M, Rao BP, Reddy V, Kim C (2014) Fe3O4/TiO2 core/shell nanocubes: Single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceram Int 40:11177–11186. https://doi.org/10.1016/j.ceramint.2014.03.148

    Article  Google Scholar 

  13. Moradi H, Eshaghi A, Hosseini SR, Ghani K (2016) Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrason Sonochem 32:314–319. https://doi.org/10.1016/j.ultsonch.2016.03.025

    Article  Google Scholar 

  14. Guan B, Yu J, Guo S, Yu S, Han S (2020) Porous nickel doped titanium dioxide nanoparticles with improved visible light photocatalytic activity. Nanoscale Adv 2:1352–1357. https://doi.org/10.1039/C9NA00760A

    Article  Google Scholar 

  15. Mathew S, Ganguly P, Rhatigan S, Kumaravel V, Byrne C, Hinder SJ, Bartlett J, Nolan M, Pillai SC (2018) Cu-doped TiO2: visible light assisted photocatalytic antimicrobial activity. Appl Sci 8:2067. https://doi.org/10.3390/app8112067

    Article  Google Scholar 

  16. Pongwan P, Wetchakun K, Phanichphant S, Wetchakun N (2016) Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 nanoparticles. Res Chem Intermed 42:2815–2830. https://doi.org/10.1007/s11164-015-2179-y

    Article  Google Scholar 

  17. Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V (2010) Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J Coll Interface Sci 352:68–74. https://doi.org/10.1016/j.jcis.2010.08.012

    Article  Google Scholar 

  18. Saleem A, Imran M, Shahzadi A, Junaid M, Majeed H, Rafiq A, Shahzadi I, Ikram M, Naz M, Ali S (2018) Drastic improvement in catalytic, optical and visible-light photocatalytic behavior of cobalt and nickel doped TiO2 nanopowder. Mater Res Expr 6:015003. https://doi.org/10.1088/2053-1591/aae28e

    Article  Google Scholar 

  19. Lorret O, Francová D, Waldner G, Stelzer N (2009) W-doped titania nanoparticles for UV and visible-light photocatalytic reactions. Appl Catal B: Environ 91:39–46. https://doi.org/10.1016/j.apcatb.2009.05.005

    Article  Google Scholar 

  20. Nasirian M, Lin Y, Bustillo-Lecompte C, Mehrvar M (2018) Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review. Int J Environ Sci Technol 15:2009–2032. https://doi.org/10.1007/s13762-017-1618-2

    Article  Google Scholar 

  21. Saharudin KA, Sreekantan S, Lai CW (2014) Fabrication and photocatalysis of nanotubular C-doped TiO2 arrays: Impact of annealing atmosphere on the degradation efficiency of methyl orange. Mater Sci Semicond Process 20:1–6. https://doi.org/10.1016/j.mssp.2013.12.019

    Article  Google Scholar 

  22. Shao Y, Cao C, Chen S, He M, Fang J, Chen J, Li X, Li D (2015) Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan. Appl Catal B: Environ 179:344–351. https://doi.org/10.1016/j.apcatb.2015.05.023

    Article  Google Scholar 

  23. Kassahun SK, Kiflie Z, Shin DW, Park SS, Chung YR (2018) Novel multistage fixed-bed photoreactor for bacterial inactivation using N-doped TiO2 nanoparticles under vis-LEDs and sunlight illumination. Nanotechnol Environ Eng 3:1–11. https://doi.org/10.1007/s41204-017-0032-9

    Article  Google Scholar 

  24. Li C, Zhong W-L, Gou Q-Z, Bai X-K, Zhang G-S, Lei C-X (2020) Facile design of F-doped TiO2/g-C3 N4 heterojunction for enhanced visible-light photocatalytic activity. J Mater Sci Mater Electron 31:3681–3694. https://doi.org/10.1007/s10854-020-02927-5

    Article  Google Scholar 

  25. Yang G, Jiang Z, Shi H, Xiao T, Yan Z (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20:5301–5309. https://doi.org/10.1039/C0JM00376J

    Article  Google Scholar 

  26. Vaez M, Alijani S, Omidkhah M, Zarringhalam Moghaddam A (2018) Synthesis, characterization and optimization of N-TiO2/PANI nanocomposite for photodegradation of acid dye under visible light. Polym Compos 39:4605–4616. https://doi.org/10.1002/pc.24574

    Article  Google Scholar 

  27. Kumar A, Sharma G, Naushad M, Ala’a H, Garcia-Penas A, Mola GT, Si C, Stadler FJ (2020) Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: a review. Chem Eng J 382:122937. https://doi.org/10.1016/j.cej.2019.122937

    Article  Google Scholar 

  28. Alijani S, Zarringhalam Moghaddam A, Vaez M, Towfighi J (2015) Synthesis of N-TiO2-P25 coated on ceramic foam by modified sol–gel method for Acid Red 73 degradation under visible-light irradiation. Res Chem Intermed 41:4489–4509. https://doi.org/10.1007/s11164-014-1546-4

    Article  Google Scholar 

  29. Plantard G, Goetz V, Sacco D (2011) TiO2-coated foams as a medium for solar catalysis. Mater Res Bull 46:231–234. https://doi.org/10.1016/j.materresbull.2010.11.011

    Article  Google Scholar 

  30. Kouamé NA, Robert D, Keller V, Keller N, Pham C, Nguyen P (2011) Preliminary study of the use of β-SiC foam as a photocatalytic support for water treatment. Catal Today 161:3–7. https://doi.org/10.1016/j.cattod.2010.10.045

    Article  Google Scholar 

  31. Lin L, Wu Q, Gong X, Zhang Y (2017) Preparation of TiO2 nanotubes loaded on polyurethane membrane and research on their photocatalytic properties. J Anal Methods Chem 2017:9629532. https://doi.org/10.1155/2017/9629532

    Article  Google Scholar 

  32. Lu S, Meng G, Wang C, Chen H (2021) Photocatalytic inactivation of airborne bacteria in a polyurethane foam reactor loaded with a hybrid of MXene and anatase TiO2 exposing 0 0 1 facets. Chem Eng J 404:126526. https://doi.org/10.1016/j.cej.2020.126526

    Article  Google Scholar 

  33. Li L, Li Y, Xu H, Zhang W (2015) Novel Floating TiO2 Photocatalysts for Polluted Water Decontamination Based on Polyurethane Composite Foam. Sep Sci Technol 50:164–173. https://doi.org/10.1080/01496395.2014.949773

    Article  Google Scholar 

  34. Ni L, Li Y, Zhang C, Li L, Zhang W, Wang D (2016) Novel floating photocatalysts based on polyurethane composite foams modified with silver/titanium dioxide/graphene ternary nanoparticles for the visible-light-mediated remediation of diesel-polluted surface water. J Appl Polym Sci. https://doi.org/10.1002/app.43400

    Article  Google Scholar 

  35. Nawawi WI, Zaharudin R, Ishak MAM, Ismail K, Zuliahani A (2017) The Preparation and Characterization of Immobilized TiO2/PEG by Using DSAT as a Support Binder. Appl Sci 7:24. https://doi.org/10.3390/app7010024

    Article  Google Scholar 

  36. Cunha DL, Kuznetsov A, Achete CA, da Hora MAE, Marques M (2018) Immobilized TiO2 on glass spheres applied to heterogeneous photocatalysis: photoactivity, leaching and regeneration process. Peer J 6:e4464. https://doi.org/10.7717/peerj.4464

    Article  Google Scholar 

  37. Hung C-H, Yuan C, Li H-W (2017) Photodegradation of diethyl phthalate with PANi/CNT/TiO2 immobilized on glass plate irradiated with visible light and simulated sunlight—effect of synthesized method and pH. J Haz Mat 322:243–253. https://doi.org/10.1016/j.jhazmat.2016.01.073

    Article  Google Scholar 

  38. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube—TiO2 composites. Adv Mater 21:2233–2239. https://doi.org/10.1002/adma.200802738

    Article  Google Scholar 

  39. Sun J, Qiao L, Sun S, Wang G (2008) Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. J Haz Mat 155:312–319. https://doi.org/10.1016/j.jhazmat.2007.11.062

    Article  Google Scholar 

  40. Muthukumar M, Sargunamani D, Senthilkumar M, Selvakumar N (2005) Studies on decolouration, toxicity and the possibility for recycling of acid dye effluents using ozone treatment. Dyes Pigm 64:39–44. https://doi.org/10.1016/j.dyepig.2004.03.012

    Article  Google Scholar 

  41. Wang Q, Liang L, Xi F, Tian G, Mao Q, Meng X (2020) Adsorption of Azo Dye Acid Red 73 onto rice wine lees: adsorption kinetics and isotherms. Adv Mater Sci Eng 2020:1–8. https://doi.org/10.1155/2020/3469579

    Article  Google Scholar 

  42. Hosseini SN, Borghei SM, Vossoughi M, Taghavinia N (2007) Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl Catal B: Environ 74:53–62. https://doi.org/10.1016/j.apcatb.2006.12.015

    Article  Google Scholar 

  43. Vaez M, Zarringhalam Moghaddam A, Alijani S (2012) Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology (RSM) based on the central composite design with immobilized titania nanoparticles. Ind Eng Chem Res 51:4199–4207. https://doi.org/10.1021/ie202809w

    Article  Google Scholar 

  44. Wongaree M, Chiarakorn S, Chuangchote S (2015) Photocatalytic improvement under visible light in TiO2 nanoparticles by carbon nanotube incorporation. J Nanomat 16:295. https://doi.org/10.1155/2015/689306

    Article  Google Scholar 

  45. Kurwadkar S, Hoang TV, Malwade K, Kanel SR, Harper WF, Struckhoff G (2019) Application of carbon nanotubes for removal of emerging contaminants of concern in engineered water and wastewater treatment systems. Nanotechnol Environ Eng 4:12. https://doi.org/10.1007/s41204-019-0059-1

    Article  Google Scholar 

  46. Vaez M, Moghaddam AZ, Mahmoodi NM, Alijani S (2012) Decolorization and degradation of acid dye with immobilized titania nanoparticles. Process Saf Environ 90:56–64. https://doi.org/10.1016/j.psep.2011.07.005

    Article  Google Scholar 

  47. Li J, Zhu L, Wu Y, Harima Y, Zhang A, Tang H (2006) Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polym 47:7361–7367. https://doi.org/10.1016/j.polymer.2006.08.059

    Article  Google Scholar 

  48. Nolan NT, Synnott DW, Seery MK, Hinder SJ, Van Wassenhoven A, Pillai SC (2012) Effect of N-doping on the photocatalytic activity of sol–gel TiO2. J Haz Mat 211:88–94. https://doi.org/10.1016/j.jhazmat.2011.08.074

    Article  Google Scholar 

  49. Zhang H, Zong R, Zhao J, Zhu Y (2008) Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ Sci Technol 42:3803–3807. https://doi.org/10.1021/es703037x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Alijani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alijani, S., Vaez, M. Enhanced removal of acid dye under visible light using CNT-modified photocatalyst coated onto PU foam. Nanotechnol. Environ. Eng. 7, 147–155 (2022). https://doi.org/10.1007/s41204-021-00204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-021-00204-2

Keywords

Navigation