Skip to main content
Log in

Asymmetric Thermally Activated Delayed Fluorescence Materials Rendering High-performance OLEDs Through both Thermal Evaporation and Solution-processing

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Exploring high-efficiency thermally activated delayed fluorescence(TADF) materials is of great importance regarding to organic light-emitting diode(OLED). Herein, we present a design strategy for developing asymmetric TADF materials based on a diphenyl sulfone-phenoxazine structure, resulting in efficient TADF emitters(CzPXZ and t-CzPXZ) with aggregation-induced emission properties, while t-CzPXZ is modified with tert-butyl groups. The two compounds exhibit high solid-state luminescence, efficient TADF, and significantly impressive device performances by both thermal evaporation and solution processing. For an instance, CzPXZ and t-CzPXZ enable the thermally-evaporated OLEDs with high external quantum efficiencies(EQEs) of over 20%. Meanwhile, t-CzPXZ allows the solution-processed device with a high EQE of 16.3% with low-efficiency roll-off, attributing to the enhanced molecular solubility and suppressed excitons quenching through tert-butyl modification on t-CzPXZ. The results reveal that the proposed asymmetric structure is a promising approach for developing high-efficiency TADF materials and OLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong G., Gan X. M., Leonhardt C., Zhang Z., Seibert J., Busch J. M., Brase S., Adv. Mater., 2021, 33, 2005630

    Article  CAS  Google Scholar 

  2. Li X. N., Xie Y. J., Li Z., Chem. Asian J., 2021, 16, 2817

    Article  CAS  PubMed  Google Scholar 

  3. Balijapalli U., Lee Y. T., Karunathilaka B. S. B., Tumen-Ulzii G., Auffray M., Tsuchiya Y., Nakanotani H., Adachi C., Angew Chem. Int. Ed., 2021, 60, 19364

    Article  CAS  Google Scholar 

  4. Wang X. Q., Yang S. Y., Tian Q. S., Zhong C., Qu Y. K., Yu Y. J., Jiang Z. Q., Liao L. S., Angew Chem., 2021, 133, 5273

    Article  Google Scholar 

  5. Cai Z. Y., Wu X., Liu H., Guo J. J., Yang D. Z., Ma D. G., Zhao Z. J., Tang B. Z., Angew Chem. Int. Ed., 2021, 60, 23635

    Article  CAS  Google Scholar 

  6. Dong R. Z., Liu D., Li J. Y., Ma M. Y., Mei Y. Q., Li D. L., Jiang J. Y., Mater. Chem. Front., 2020, 6, 40

    Article  Google Scholar 

  7. Zhou C. J., Cao C., Yang D. Z., Cao X. S., Liu H., Ma D. G., Li C. S., Yang C. L., Mater. Chem. Front., 2021, 5, 3209

    Article  CAS  Google Scholar 

  8. Zhou J. X., Zeng X. Y., Xie F. M., He Y. H., Tang Y. Q., Li Y. Q., Tang J. X., Mater. Today Energy, 2021, 21, 100819

    Article  CAS  Google Scholar 

  9. Chen Y., Zhang D. D., Zhang Y. W., Zeng X., Huang T. Y., Liu Z. Y., Li G. M., Duan L., Adv. Mater., 2021, 33, 2103293

    Article  CAS  Google Scholar 

  10. Wang S. M., Zhang H. Y., Zhang B. H., Xie Z. Y., Wong W. Y., Mater. Sci. Eng. R Rep., 2020, 140, 100547

    Article  Google Scholar 

  11. Sato K., Uchida S., Toriyama S., Nishimura S., Oyaizu K., Nishide H., Nishikitani Y., Adv. Mater. Technol., 2017, 2, 1600293

    Article  Google Scholar 

  12. Sandstrom A., Dam H. F., Krebs F. C., Edman L., Nat. Commun., 2012, 3, 1

    Article  Google Scholar 

  13. Lee S. M., Kwon J. H., Kwon S., Choi K. C., IEEE T. Electron Dev., 2017, 64, 1922

    Article  CAS  Google Scholar 

  14. Han T. H., Lee Y. B., Choi M. R., Woo S. H., Bae S. H., Hong B. H., Ahn J. H., Lee T. W., Nature Photon., 2012, 6, 105

    Article  CAS  Google Scholar 

  15. Huang T. Y., Jiang W., Duan L., J. Mater. Chem. C, 2018, 6, 5577

    Article  CAS  Google Scholar 

  16. Zou Y., Gong S. L., Xie G. H., Yang C. L., Adv. Optical Mater., 2018, 6, 1800568

    Article  Google Scholar 

  17. Li W. L., Huang Q. Y., Mao Z., Zhao J., Wu H. Y., Chen J. R., Yang Z., Li Y., Yang Z. Y., Zhang Y., Aldred M. P., Chi Z. G., Angew Chem. Int. Ed., 2020, 132, 3768

    Article  Google Scholar 

  18. Yang J., Chi Z., Zhu W., Tang B. Z., Li Z., Sci. China Chem., 2019, 62, 1090

    Article  CAS  Google Scholar 

  19. Yang Z. Y., Mao Z., Xie Z. L., Zhang Y., Liu S. W., Zhao J., Xu J. R., Chi Z. G., Aldred M. P., Chem. Soc. Rev., 2017, 46, 915

    Article  CAS  PubMed  Google Scholar 

  20. Chen X. L., Tao X. D., Wei Z. Z., Meng L. Y., Lin F. L., Zhang D. H., Jing Y. Y., Lu C. Z., ACS Appl. Mater. Interfaces, 2021, 13, 46909

    Article  CAS  PubMed  Google Scholar 

  21. Tsai W. L., Huang M. H., Lee W. K., Hsu Y. J., Pan K. C., Huang Y. H., Ting H. C., Sarma M., Ho Y. Y., Hu H. C., Chen C. C., Lee M. T., Wong K. T., Wu C. C., Chem. Commun., 2015, 51, 13662

    Article  CAS  Google Scholar 

  22. Lee I. H., Song W., Lee J. Y., Org. Electron., 2016, 29, 22

    Article  CAS  Google Scholar 

  23. Zhang Q. S., Li B., Huang S. P., Nomura H., Tanaka H., Adachi C., Nature Photon., 2014, 8, 326

    Article  CAS  Google Scholar 

  24. Xie G. H., Luo J. J., Huang M. L., Chen T. H., Wu K. L., Gong S. L., Yang C. L., Adv. Mater., 2017, 29, 1604223

    Article  Google Scholar 

  25. Yang Z., Mao Z., Xu C., Chen X. J., Zhao J., Yang Z. Y., Zhang Y., Wu W., Jiao S. B., Liu Y., Aldred M. P., Chi Z. G., Chem. Sci., 2019, 10, 8129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei W. C., Yang Z., Chen X. J., Liu T. T., Mao Z., Zhao J., Chi Z. G., J. Mater. Chem. C, 2020, 8, 3663

    Article  CAS  Google Scholar 

  27. Zhao J., Chen X. J., Yang Z., Liu T. T., Yang Z. Y., Zhang Y., Xu J. R., Chi Z. G., J. Phys. Chem. C, 2018, 123, 1015

    Article  Google Scholar 

  28. Tanaka H., Shizu K., Miyazaki H., Adachi C., Chem. Commun., 2012, 48, 11392

    Article  CAS  Google Scholar 

  29. Chen J. X., Tao W. W., Xiao Y. F., Wang K., Zhang M., Fan X. C., Chen W. C., Yu J., Li S. L., Geng F. X., Zhang X. H., Lee C. S., ACS Appl. Mater. Interfaces, 2019, 11, 29086

    Article  CAS  PubMed  Google Scholar 

  30. Kim H. J., Kang H., Jeong J. E., Park S. H., Koh C. W., Kim C. W., Woo H. Y., Cho M. J., Park S., Choi D. H., Adv. Funct. Mater., 2021, 31, 2102588

    Article  CAS  Google Scholar 

  31. Xie F. M., An Z. D., Xie M., Li Y. Q., Zhang G. H., Zou S. J., Chen L., Chen J. D., Cheng T., Tang J. X., J. Mater. Chem. C, 2020, 8, 5769

    Article  CAS  Google Scholar 

  32. Wallwork N. R., Mamada M., Shukla A., McGregor S. K. M., Ahachi C., Namdas E. B., Lo S. C., J. Mater. Chem. C, 2022, 10, 4767

    Article  CAS  Google Scholar 

  33. Xie G. Z., Li X. L., Chen D. J., Wang Z. H., Cai X. Y., Chen D. C., Li Y. C., Liu K. K., Cao Y., Su S. J., Adv. Mater., 2016, 28, 181

    Article  CAS  PubMed  Google Scholar 

  34. Godumala M., Choi S., Cho M. J., Choi D. H., J. Mater. Chem. C, 2019, 7, 2172

    Article  CAS  Google Scholar 

  35. Sk B., Thangaraji V., Yadav N., Nanda G. P., Das S., Gandeepan P., Zysman-Colman E., Rajamalli P., J. Mater. Chem. C, 2021, 9, 15583

    Article  CAS  Google Scholar 

  36. Yang G., Ran Y., Wu Y. M., Chen M. Q., Bin Z. Y., You J. S., Aggregate, 2021, e127

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China(Nos.52073316, 51733010, 51973239) and the Science and Technology Planning Project of Guangzhou City, China(No.202102020951).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Zhao or Zhenguo Chi.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Electronic Supplementary Material

40242_2022_2111_MOESM1_ESM.pdf

Asymmetric Thermally Activated Delayed Fluorescence Materials Rendering High-performance OLEDs Through both Thermal Evaporation and Solution-processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Chen, X., Ge, X. et al. Asymmetric Thermally Activated Delayed Fluorescence Materials Rendering High-performance OLEDs Through both Thermal Evaporation and Solution-processing. Chem. Res. Chin. Univ. 38, 1526–1531 (2022). https://doi.org/10.1007/s40242-022-2111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2111-0

Keywords

Navigation