Skip to main content
Log in

Microwave-Assisted Synthesis, In Vivo Anti-Inflammatory and In Vitro Anti-Oxidant Activities, and Molecular Docking Study of New Substituted Schiff Base Derivatives

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

In view of considerable interest in the design and synthesis of new heterocyclic compounds with promising biological activities for medical and biological applications, a series of eight imine derivatives have been synthesized through microwave-assisted Schiff base formation by reacting 2-(4-methoxyphenyl)acetohydrazide (3) and 4-amino-3-(4-methoxybenzyl)-1H-1,2,4-triazole-5(4H)-thione (6) with various substituted aldehydes. Structures of the newly synthesized compounds were characterized by FT-IR, 1H NMR and 13C NMR spectral analysis. All the synthesized derivatives were screened for their in vivo anti-inflammatory and in vitro anti-oxidant activities using carrageenan induced rat paw edema test and DPPH free radical scavenging assay, respectively. In addition, molecular docking experiment was also performed to check the actual binding affinity of ligand against target protein. Compounds 4a, 4c, 7a, and 7c screened as potent anti-inflammatory drugs significantly lowered the volume of rat paw edema (P < 0.05). In case of anti-oxidant assay, compound 7a with ferrocenyl group as substituent R and 3,4-disubstitued 1,2,4-triazole as side coupled group exhibited IC50 value of 7.2 ± 2.7 μg/mL comparable with that of the reference ascorbic acid (2.61 ± 0.29 μg/mL) and was the most active compound among the series. However, no prominent results were obtained in case of aralkanoic acid hydrazide substituted Schiff base derivatives 4a – 4d. It is believed that the synthesized Schiff base derivatives can be used for the development of potent anti-inflammatory and anti-oxidant drugs with considerable advantages of convenient synthetic strategy possessing high product yield, short reaction time, and convenient handling. The molecular docking results were found in good correlation with experimental IC50 values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. S1.
Fig. S2.
Fig. S3.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. R. González, S. Rodríguez, C. Romay, et al., Pharmacol Res., 39(1), 55 – 59 (1999).

    Article  PubMed  Google Scholar 

  2. Y. F. Chen, H. Y. Tsai, and T. S. Wu, Planta Med., 61(1), 2 – 8 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. V. Mani, K. Ramasamy, and A. B. A. Majeed, Food Funct., 4(4), 557 – 567 (2013).

    Article  PubMed  CAS  Google Scholar 

  4. K Seth, S. K. Garg, Raj Kumar, et al., Med. Chem. Lett., 5(5), 512 – 516 (2014).

    Article  CAS  Google Scholar 

  5. X. Li, J. Y. Zhang, W. Y. Gao, et al., J. Agric. Food Chem., 60(35), 8738 – 8744 (2012).

    Article  PubMed  CAS  Google Scholar 

  6. B. B. Silva, S. M. Alencar, H. Koo, et al, J. Agric. Food Chem., 61(19), 4546 – 4550 (2013).

    Article  PubMed  CAS  Google Scholar 

  7. S. Jain, S. Tran, M. A. M. El Gendy, et al., J. Med. Chem., 55(2), 688 – 696 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. Y. Fu, H. Zhou, M. Wang, et al., J. Agric. Food Chem., 62(18), 4127 – 4134 (2014).

    Article  PubMed  CAS  Google Scholar 

  9. H. Zelová, Z. Hanáková, Z. Èermáková, et al., J. Nat. Prod., 77(6), 1297 – 1303 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. R. Dubey, P. Singh, A. K. Singh, et al., Cryst. Growth Des., 14(3), 1347 – 1356 (2014).

    Article  CAS  Google Scholar 

  11. S. V. Joseph, I. Edirisinghe, and B. M. Burton-Freeman, J. Agric. Food Chem., 62(18), 3886 – 3903 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. M. Aursnes, J. E. Tungen, A. Vik, et al., J. Nat. Prod., 77(4), 910 – 916 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. L. Haya, I. Osante, A. M. Mainar, et al., Phys. Chem. Chem. Phys., 15(23), 9407 – 9413 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. M. Kratchanova, P. Denev, and M. Ciz, Acta Biochim. Pol., 57(2), 229 – 234 (2010).

    PubMed  CAS  Google Scholar 

  15. P. Pietta, P. Simonetti, and P. Mauri, J. Agric. Food Chem., 46(11), 4487 – 4490 (1998).

    Article  CAS  Google Scholar 

  16. A. Djeridanea, M. Yousfia, B. Nadjemi, et al., Food Chem., 97(4), 654 – 660 (2006).

    Article  CAS  Google Scholar 

  17. S. I. Kim, K. Hyeon, and S. Y. Choi, Mol. Cell Toxicol., 6(3), 279 – 285 (2010).

    Article  CAS  Google Scholar 

  18. Y. L. Ho, S. S. Huang, J. S. Deng, et al., Bot. Stud., 53(1) 55-66 (2012).

    CAS  Google Scholar 

  19. W. Chen, W. Ou, L. Wang, et al., Dalton Trans., 42(44), 15678 – 15686 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. E. R. Milaeva, D. B. Shpakovsky, Y. A. Gracheva, et al., Dalton Trans. 42(19), 6817 – 6828 (2013).

    Article  PubMed  CAS  Google Scholar 

  21. J. Y. Bor, H. Y. Chen, G. C. Yen, et al., J. Agric. Food Chem. 54(5), 1680 – 1686 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. W. A. Yehye, N. A. Rahman, O. Saad, et al., Molecules, 21, 847 (2016); doi: https://doi.org/10.3390/molecules21070847.

    Article  CAS  Google Scholar 

  23. C. A. Winter, E. A. Risley, and G. W. Nuss, Proc. Soc. Exp. Biol. Med., 111 544 – 547 (1962).

    Article  PubMed  CAS  Google Scholar 

  24. O. O. Adeyemi, S. O. Okpo, and O. O. Ogunti, Fitoterapia, 73(5), 375 – 380 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. S. A. M. Reddya, J. Mudgala, P. Bansal, et al., Bioorg. Med. Chem. 19(1) 384 – 392 (2011).

    Article  CAS  Google Scholar 

  26. A. A. Ehab., R. M. Julie., and A. K. Ikhlas, Bioorg. Med. Chem. 20(9), 2784 – 2788 (2012).

    Article  CAS  Google Scholar 

  27. S. Michael, C. Pascal, M. Patricia, et al., Bioorg. Chem.. 36(3), 133 – 140 (2008).

    Article  CAS  Google Scholar 

  28. S. Suvarna, K. Krishna, S. Kaushik, et al., Eur. J. Med. Chem., 62, 435 – 442 (2013).

    Article  CAS  Google Scholar 

  29. O. Abid, T. M. Babar, F. Ali, et al., ACS Med. Chem. Lett., 1, 145 – 149 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Z. Ashraf, Alamgeer, R. Rasool, et al., Int. J. Mol. Sci., 17, 2151 (2016).

  31. M. N. Marjan, M. T. Hamzeh, E. Rahman, et al., Comput. Biol. Chem., 51, 57 – 62 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Z. Ashraf, Alamgeer, M. Kanwal, et al., Drug Design, Dev. Ther., 10, 2401 – 2419 (2016).

    Article  CAS  Google Scholar 

  33. C. Colovos and T. O. Yeates, Protein Sci., 2(9), 1511 – 1519 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. F. Melo, D. Devos, E. Depiereux, et al., Proc. Int. Conf. Intell. Syst. Mol. Biol., 5, 187 – 190 (1997).

    PubMed  CAS  Google Scholar 

  35. R. A. Laskowski, M. W. MacArthur, D. S. Moss, et al., J. Appl. Crystallogr., 26(2), 283–291 (1993).

    Article  CAS  Google Scholar 

  36. S. C. Lovell, I. W. Davis, W. B. Arendall III, et al., Proteins, 50(3), 437 – 450 (2002).

    Article  CAS  Google Scholar 

  37. A. Pedretti, L. Villa, and G. Vistoli, J. Comput. Aided Mol. Des., 18(3), 167 – 173 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. E. F. Pettersen, T. D. Goddard, C. C. Huang, et al., J. Comput. Chem., 25(13), 1605 – 1612 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. Accelrys Software D Studio, Version 4.1, Accelrys Software Inc., San Diego, CA (2007).

  40. V. B. Chen, W. B. Arendall III, J. J. Headd, et al., Acta Crystallogr D: Biol Crystallogr., 66 (Pt. 1), 12 – 21 (2010).

    Article  CAS  Google Scholar 

  41. D. E. V. Pires, T. L. Blundell, and D. B. Ascher, J. Med. Chem., 58(9), 4066 – 4072 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. S. Dallakyan and A. J. Olson, Methods Mol. Biol., 1263, 243 – 250 (2015).

    Article  PubMed  CAS  Google Scholar 

  43. R. U. Kadam and N. Roy, Indian J. Pharm. Sci., 69(5), 609 – 615 (2007).

    Article  CAS  Google Scholar 

  44. A. K. Ghose, T. Herbertz, R. L. Hudkins, et al., ACS Chem. Neurosci., 3(1), 50 – 68, (2012).

    Article  PubMed  CAS  Google Scholar 

  45. M. A. Bakhta, M. S. Yar, S. G. Abdel-Hamid, et al., Eur. J. Med. Chem., 45(12), 5862 – 5869 (2010).

    Article  CAS  Google Scholar 

  46. S. Tiana, J. Wangc, Y. Li, et al., Adv. Drug Deliv. Rev., 86, 2 – 10 (2015).

    Article  CAS  Google Scholar 

  47. P. B. Jadhav, A. R. Yadav, and M. G. Gore, Int. J. Pharm. Bio. Sci., 6, 142 – 154 (2015).

    CAS  Google Scholar 

Download references

Declaration of Interests

The authors declare no competing interests. M. Hanif and M. Hassan contributed equally to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanif, M., Hassan, M., Rafiq, M. et al. Microwave-Assisted Synthesis, In Vivo Anti-Inflammatory and In Vitro Anti-Oxidant Activities, and Molecular Docking Study of New Substituted Schiff Base Derivatives. Pharm Chem J 52, 424–437 (2018). https://doi.org/10.1007/s11094-018-1835-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1835-0

Keywords

Navigation