Skip to main content
Log in

Nonlinear Vibrations of a Nanobeams Rested on Nonlinear Elastic Foundation Under Primary Resonance Excitation

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a comprehensive analysis of the nonlinear vibrations of nanobeams on nonlinear foundations under primary resonance excitation is presented. By utilizing advanced theories and highlighting the distinctions from previous work, we provide valuable insights into the behavior of these structures and their interaction with the supporting foundation. The results contribute to advancing the understanding and design of micro/nanoscale systems in a wide range of applications. The nanobeam is modeled in this paper as a Euler–Bernoulli beam with size-dependent properties. The material length scale parameter in this non-classical nanobeam model accounts for size effects at the nanoscale. For the nanobeam, two boundary conditions are taken into account: simply supported and clamped–clamped. The system's governing equation of motion is derived using the modified couple stress theory, and the accompanying boundary conditions are obtained by applying Hamilton's principle. This hypothesis enhances the analysis's precision by accounting for size effects. To arrive at an approximative analytical solution, the study employs an analytical method called the multiple-scale method. To manage primary resonance excitation in nonlinear systems, this technique is frequently used. The analysis takes into account a number of parameters, including the nonlinear foundation parameter (KNL), Winkler parameter (KL), Pasternak parameter (KP), and material length scale parameter (l/h). These variables have a significant impact on how the nanobeam behaves on the nonlinear foundation. The study includes numerical results in graphical and tabular formats that show how the linear fundamental frequency, nonlinear frequency ratio, and vibration amplitude are affected by the material length scale parameter and stiffness coefficients of the nonlinear foundation. The research includes a comparison study with prior literature on related issues to verify the accuracy of the results acquired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdullah SS, Hosseini-Hashemi S, Hussein NA, Nazemnezhad R (2020) Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium. J Therm Stresses 43(10):1316–1332

    Article  Google Scholar 

  • Aifantis EC (1999) Strain gradient interpretation of size effects. Fracture scaling. Springer, Dordrecht, pp 299–314

    Chapter  Google Scholar 

  • Akbarzadeh Khorshidi M (2021) Postbuckling of viscoelastic micro/nanobeams embedded in visco-Pasternak foundations based on the modified couple stress theory. Mech Time-Depend Mater 25(2):265–278

    Article  Google Scholar 

  • Alimoradzadeh M, Salehi M, Esfarjani SM (2020) Nonlinear vibration analysis of axially functionally graded microbeams based on nonlinear elastic foundation using modified couple stress theory. Period Polytech Mech Eng 64(2):97–108

    Article  Google Scholar 

  • Alizadeh A, Shishesaz M, Shahrooi S, Reza A (2022) A modified couple stress-based model for the nonlinear vibrational analysis of nano-disks using multiple scales method. J Appl Comput Mech 8(2):580–596

    Google Scholar 

  • Awrejcewicz J, Krysko AV, Zhigalov MV, Krysko VA (2021) Size-dependent theories of beams, plates and shells. Mathematical modelling and numerical analysis of size-dependent structural members in temperature fields: regular and chaotic dynamics of micro/nano beams, and cylindrical panels, pp 25–78

  • Azrar L, Benamar R, White RG (1999) A semi-analytical approach to the nonlinear dynamic response problem of S-S and C–C beams at large vibration amplitudes. Part I: general theory and application to the single mode approach to free and forced vibration analysis. J Sound Vib 224:183–207

    Article  Google Scholar 

  • Bagdatli SM, Oz HR, Ozkaya E (2011) Dynamics of axially accelerating beams with an intermediate support. J Vib Acoust 133(3):031013/1–10

    Article  Google Scholar 

  • Barooti MM, Safarpour H, Ghadiri M (2017) Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations. Eur Phys J plus 132(1):1–21

    Article  Google Scholar 

  • Bhattacharya S, Das D (2020) A study on free vibration behavior of microbeam under large static deflection using modified couple stress theory. Advances in fluid mechanics and solid mechanics. Springer, Singapore, pp 155–164

    Chapter  Google Scholar 

  • Damghanian R, Asemi K, Babaei M (2020) A new beam element for static, free and forced vibration responses of microbeams resting on viscoelastic foundation based on modified couple stress and third-order beam theories. Iran J Sci Technol-Trans Mech Eng, pp 1–17

  • Das D (2019) Nonlinear forced vibration analysis of higher order shear-deformable functionally graded microbeam resting on nonlinear elastic foundation based on modified couple stress theory. Proc Inst Mech Eng l: J Mater Des Appl 233(9):1773–1790

    Google Scholar 

  • Dehrouyeh-Semnani AM (2021) On large deformation and stability of microcantilevers under follower load. Int J Eng Sci 168:103549

    Article  MathSciNet  MATH  Google Scholar 

  • Dehrouyeh-Semnani AM, Nikkhah-Bahrami M (2015a) A discussion on the evaluation of material length scale parameter based on microcantilever test. Compos Struct 122:425–429

    Article  Google Scholar 

  • Dehrouyeh-Semnani AM, Nikkhah-Bahrami M (2015b) A discussion on incorporating the Poisson effect in microbeam models based on modified couple stress theory. Int J Eng Sci 86:20–25

    Article  Google Scholar 

  • Dehrouyeh-Semnani AM, Dehrouyeh M, Torabi-Kafshgari M, Nikkhah-Bahrami M (2015) A damped sandwich beam model based on symmetric–deviatoric couple stress theory. Int J Eng Sci 92:83–94

    Article  MATH  Google Scholar 

  • Dehrouyeh-Semnani AM, Mostafaei H, Nikkhah-Bahrami M (2016) Free flexural vibration of geometrically imperfect functionally graded microbeams. Int J Eng Sci 105:56–79

    Article  MathSciNet  MATH  Google Scholar 

  • El-Borgi S, Fernandes R, Reddy JN (2015) Non-local free and forced vibrations of graded nanobeams resting on a non-linear elastic foundation. Int J Non-Linear Mech 77:348–363

    Article  Google Scholar 

  • El-Ganaini WA, Saeed NA, Eissa M (2013) Positive position feedback (PPF) controller for suppression of nonlinear system vibration. Nonlinear Dyn 72:517–537

    Article  MathSciNet  Google Scholar 

  • Emam SA (2009) A static and dynamic analysis of the postbuckling of geometrically imperfect composite beam. Compos Struct 90(2):247–253

    Article  MathSciNet  Google Scholar 

  • Emam SA, Nayfeh AH (2009) Postbuckling and free vibrations of composite beams. Compos Struct 88(4):636–642

    Article  Google Scholar 

  • Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16

    Article  MathSciNet  MATH  Google Scholar 

  • Eyebe GJ, Betchewe G, Mohamadou A, Kofane TC (2018) Nonlinear vibration of a nonlocal nanobeam resting on fractional-order viscoelastic Pasternak foundations. Fractal Fract 2(3):21

    Article  MATH  Google Scholar 

  • Ghadiri M, Safarpour H (2018) Free vibration analysis of a functionally graded cylindrical nanoshell surrounded by elastic foundation based on the modified couple stress theory. Amirkabir J Mech Eng 49:257–260

    Google Scholar 

  • Ghadiri M, Soltanpour M, Yazdi A, Safi M (2016) Studying the influence of surface effects on vibration behavior of size-dependent cracked FG Timoshenko nanobeam considering nonlocal elasticity and elastic foundation. Appl Phys A 122(5):1–21

    Article  Google Scholar 

  • Ghorbanpour Arani A, Bagheri MR, Kolahchi R, Khoddami Maraghi Z (2013) Nonlinear vibration and instability of fluid-conveying DWBNNT embedded in a visco-Pasternak medium using modified couple stress theory. J Mech Sci Technol 27(9):2645–2658

    Article  Google Scholar 

  • Gorji Azandariani M, Gholami M, Vaziri E, Nikzad A (2021) Nonlinear static analysis of a bi-directional functionally graded microbeam based on a nonlinear elastic foundation using modified couple stress theory. Arab J Sci Eng 46(12):12641–12651

    Article  Google Scholar 

  • Hieu DV (2018) Postbuckling and free nonlinear vibration of microbeams based on nonlinear elastic foundation. Math Probl Eng

  • Jam JE, Noorabadi M, Namdaran N (2017) Nonlinear free vibration analysis of micro-beams resting on viscoelastic foundation based on the modified couple stress theory. Arch Mech Eng 64(2):239–256

    Article  Google Scholar 

  • Javadi M, Rahmanian M (2021) Nonlinear vibration of fractional Kelvin-Voigt viscoelastic beam on nonlinear elastic foundation. Commun Nonlinear Sci Numer Simul 98:105784

    Article  MathSciNet  MATH  Google Scholar 

  • Ke LL, Wang YS (2011) Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory. Phys E: Low-Dimens Syst Nanostruct 43(5):1031–1039

    Article  Google Scholar 

  • Kong S (2022) A review on the size-dependent models of micro-beam and micro-plate based on the modified couple stress theory. Arch Comput Methods Eng 29(1):1–31

    Article  MathSciNet  Google Scholar 

  • Kong S, Zhou S, Nie Z, Wang K (2008) The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int J Eng Sci 46(5):427–437

    Article  MATH  Google Scholar 

  • Kwon YR, Lee BC (2022) Numerical evaluation of beam models based on the modified couple stress theory. Mech Adv Mater Struct 29(11):1511–1522

    Article  Google Scholar 

  • Lam DC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  • Lei J, He Y, Guo S, Li Z, Liu D (2016) Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. AIP Adv 6(10)

  • Li Z, He Y, Lei J, Han S, Guo S, Liu D (2019a) Experimental investigation on size-dependent higher-mode vibration of cantilever microbeams. Microsyst Technol 25:3005–3015

    Article  Google Scholar 

  • Li Z, He Y, Zhang B, Lei J, Guo S, Liu D (2019b) Experimental investigation and theoretical modelling on nonlinear dynamics of cantilevered microbeams. Eur J Mech A-Solids 78:103834

    Article  MathSciNet  MATH  Google Scholar 

  • Li Z, Chen B, Lin B, Zhao X, Li Y (2022) Analytical solutions of the forced vibration of Timoshenko micro/nano-beam under axial tensions supported on Winkler-Pasternak foundation. Eur Phys J plus 137(1):1–22

    Article  Google Scholar 

  • Liebold C, Müller WH (2016) Comparison of gradient elasticity models for the bending of micromaterials. Comput Mater Sci 116:52–61

    Article  Google Scholar 

  • Lijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  Google Scholar 

  • Lopez GA, Estevez MC, Soler M, Lechuga LM (2017) Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration. Nanophotonics 6(1):123–136

    Article  Google Scholar 

  • Ma HM, Gao XL, Reddy J (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56(12):3379–3391

    Article  MathSciNet  MATH  Google Scholar 

  • Madkour LH, Madkour, LH (2019) Environmental impact of nanotechnology and novel applications of nano materials and nano devices. Nanoelectronic Mater: Fundam Appl 605–699

  • Mahmure A, Sofiyev AH, Fantuzzi N, Kuruoglu N (2021) Primary resonance of double-curved nanocomposite shells using nonlinear theory and multi-scales method: modeling and analytical solution. Int J Non-Linear Mech 137:103816

    Article  Google Scholar 

  • Malekzadeh P, Vosoughi AR (2009) DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges. Commun Nonlinear Sci Numer Simul 14(3):906–915

    Article  Google Scholar 

  • Mamandi A (2023) Nonlocal large deflection analysis of a cantilever nanobeam on a nonlinear Winkler-Pasternak elastic foundation and under uniformly distributed lateral load. J Mech Sci Technol 37(2):813–824

    Article  Google Scholar 

  • Miandoab EM, Pishkenari HN, Yousefi-Koma A, Hoorzad H (2014) Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Phys e: Low-Dimens Syst Nanostruct 63:223–228

    Article  Google Scholar 

  • Nateghi A, Salamat-talab M, Rezapour J, Daneshian B (2012) Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory. Appl Math Model 36(10):4971–4987

    Article  MathSciNet  MATH  Google Scholar 

  • Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New York

    MATH  Google Scholar 

  • Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  • Nayfeh AH, Mook DT, Lobitz DW (1974) Numerical-Perturbation method for the nonlinear analysis of structural vibrations. AIAA J 12(9):1222–1228

    Article  MATH  Google Scholar 

  • Öz HR, Boyacı H (2000) Transverse vibrations of tensioned pipes conveying fluid with time-dependent velocity. J Sound Vib 236(2):259–276

    Article  Google Scholar 

  • Pakdemirli M, Öz HR (2008) Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations. J Sound Vib 311(3–5):1052–1074

    Article  Google Scholar 

  • Pakdemirli M, Nayfeh SA, Nayfeh AH (1995) Analysis of one-to-one autoparametric resonances in cables-discretization vs direct treatment. Nonlinear Dyn 8:65–83

    Article  MathSciNet  Google Scholar 

  • Park SK, Gao XL (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J Micromech Microeng 16(11):2355

    Article  Google Scholar 

  • Rafiei M, Mohebpour SR, Daneshmand F (2012) Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium. Phys E: Low-Dimens Syst Nanostruct 44(7–8):1372–1379

    Article  Google Scholar 

  • Reddy JN (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59(11):2382–2399

    Article  MathSciNet  MATH  Google Scholar 

  • Roudbari MA, Jorshari TD, Lü C, Ansari R, Kouzani AZ, Amabili M (2022) A review of size-dependent continuum mechanics models for micro-and nano-structures. Thin Wall Struct 170:108562

    Article  Google Scholar 

  • Sari MES (2017) Superharmonic resonance analysis of nonlocal nano beam subjected to axial thermal and magnetic forces and resting on a nonlinear elastic foundation. Microsyst Technol 23(8):3319–3330

    Article  Google Scholar 

  • Sari MES, Al-Kouz WG, Atieh AM (2020) Transverse vibration of functionally graded tapered double nanobeams resting on elastic foundation. Appl Sci 10(2):493

    Article  Google Scholar 

  • Sedighi HM, Chan-Gizian M, Noghreha-Badi A (2014) Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory. Lat Am J Solids Struct 11:810–825

    Article  Google Scholar 

  • Shafiei N, Kazemi M, Fatahi L (2017) Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method. Mech Adv Mater Struct 24(3):240–252

    Article  Google Scholar 

  • Şimşek M (2010) Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int J Eng Sci 48(12):1721–1732

    Article  MATH  Google Scholar 

  • Şimşek M (2014a) Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. Compos Struct 112:264–272

    Article  Google Scholar 

  • Şimşek M (2014b) Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Compos Part B: Eng 56:621–628

    Article  Google Scholar 

  • Şimşek M, Reddy JN (2013) A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Compos Struct 101:47–58

    Article  Google Scholar 

  • Sobhy M, Zenkour AM (2020) The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations. Mech Adv Mater Struct 27(7):525–538

    Article  Google Scholar 

  • Soltani P, Taherian MM, Farshidianfar A (2010) Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium. J Phys D Appl Phys 43(42):425401

    Article  Google Scholar 

  • Stojanović V (2015) Geometrically nonlinear vibrations of beams supported by a nonlinear elastic foundation with variable discontinuity. Commun Nonlinear Sci Numer Simul 28(1–3):66–80

    Article  MathSciNet  MATH  Google Scholar 

  • Tang C, Alici G (2011a) Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: I. Experimental determination of length-scale factors. J Phys D: Appl Phys 44(33):335501

    Article  Google Scholar 

  • Tang C, Alici G (2011b) Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: II. Experimental verification of deflection models using atomic force microscopy. J Phys D: Appl Phys 44(33):335502

    Article  Google Scholar 

  • Togun N (2016) Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation. Bound Value Probl 1:1–14

    MathSciNet  MATH  Google Scholar 

  • Togun N, Bağdatlı SM (2016a) Nonlinear vibration of a nanobeam on a Pasternak elastic foundation based on non-local Euler-Bernoulli beam theory. Math Comput Appl 21(1):3

    MathSciNet  Google Scholar 

  • Togun N, Bağdatlı SM (2016b) 0Size dependent non-linear vibration of the tensioned nanobeam based on the modified couple stress theory. Compos Part B-Eng 97:255–262

    Article  Google Scholar 

  • Trabelssi M, El-Borgi S, Ke LL, Reddy JN (2017) Nonlocal free vibration of graded nanobeams resting on a nonlinear elastic foundation using DQM and LaDQM. Compos Struct 176:736–747

    Article  Google Scholar 

  • Trabelssi M, El-Borgi S, Fernandes R, Ke LL (2019) Nonlocal free and forced vibration of a graded Timoshenko nanobeam resting on a nonlinear elastic foundation. Compos Part B-Eng 157:331–349

    Article  Google Scholar 

  • Uzun B, Civalek Ö, Yaylı MÖ (2020) Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions. Mech Based Des Struct Mach, pp 1–20

  • Wang YZ, Li FM (2014) Nonlinear free vibration of nanotube with small scale effects embedded in viscous matrix. Mech Res Commun 60:45–51

    Article  Google Scholar 

  • Wang YG, Lin WH, Liu N (2013) Nonlinear free vibration of a microscale beam based on modified couple stress theory. Phys e: Low Dimens Syst Nanostruct 47:80–85

    Article  Google Scholar 

  • Xia W, Wang L, Yin L (2010) Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. Int J Eng Sci 48(12):2044–2053

    Article  MathSciNet  MATH  Google Scholar 

  • Yang FACM, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

  • Zhang GY, Gao XL, Ding S (2018) Band gaps for wave propagation in 2-D periodic composite structures incorporating microstructure effects. Acta Mech 229(10):4199–4214

    Article  MathSciNet  MATH  Google Scholar 

  • Zhen YX, Fang B, Tang Y (2011) Thermal–mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium. Phys e: Low-Dimens Syst Nanostruct 44(2):379–385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necla Togun.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

All the authors listed have approved the manuscript that is enclosed and the work described has not been submitted elsewhere for publication, in whole or in part.

Appendix

Appendix

$$\begin{gathered} \beta_{2} = + \sqrt {\frac{{ - K_{P} + \sqrt {\left( {K_{P} } \right)^{2} - 4(1 + \eta )(K_{L} - \omega^{2} )} }}{2(1 + \eta )}} \hfill \\ \beta_{3} = - \sqrt {\frac{{ - K_{P} - \sqrt {\left( {K_{P} } \right)^{2} - 4(1 + \eta )(K_{L} - \omega^{2} )} }}{2(1 + \eta )}} \hfill \\ \beta_{4} = + \sqrt {\frac{{ - K_{P} - \sqrt {\left( {K_{P} } \right)^{2} - 4(1 + \eta )(K_{L} - \omega^{2} )} }}{2(1 + \eta )}} \hfill \\ \end{gathered}$$

Simple–Simple Support

Support condition:

$$\begin{gathered} \beta_{1}^{2} \left( {\left( {e^{{i\beta_{1} }} - e^{{i\beta_{2} }} } \right)} \right.\left( {e^{{i\beta_{3} }} - e^{{i\beta_{4} }} } \right)\beta_{2}^{2} - \left( {e^{{i\beta_{1} }} - e^{{i\beta_{3} }} } \right)\left( {e^{{i\beta_{2} }} - e^{{i\beta_{4} }} } \right)\beta_{3}^{2} + \left( {e^{{i\beta_{2} }} - e^{{i\beta_{3} }} } \right)\left( {e^{{i\beta_{1} }} - e^{{i\beta_{4} }} } \right)\left. {\beta_{4}^{2} } \right) \hfill \\ + \beta_{2}^{2} \left( {\left( {e^{{i\beta_{2} }} - e^{{i\beta_{3} }} } \right)} \right.\left( {e^{{i\beta_{1} }} - e^{{i\beta_{4} }} } \right)\beta_{3}^{2} - \left( {e^{{i\beta_{1} }} - e^{{i\beta_{3} }} } \right)\left( {e^{{i\beta_{2} }} - e^{{i\beta_{4} }} } \right)\left. {\left. {\beta_{4}^{2} } \right)} \right)\left( {e^{{i\beta_{2} }} - e^{{i\beta_{4} }} } \right)\left. {\left. {\beta_{4}^{2} } \right)} \right) \hfill \\ + \left( {\left( {e^{{i\beta_{1} }} - e^{{i\beta_{2} }} } \right)} \right.\left( {e^{{i\beta_{3} }} - e^{{i\beta_{4} }} } \right)\beta_{3}^{2} \beta_{4}^{2} = 0 \hfill \\ \end{gathered}$$

The coefficients in the mode shapes

$$\begin{gathered} c_{2} = \frac{{\left( { - e^{{i\beta_{3} }} + e^{{i\beta_{4} }} } \right)\beta_{1}^{2} + \left( {e^{{i\beta_{1} }} - e^{{i\beta_{4} }} } \right)\beta_{3}^{2} - \left( {e^{{i\beta_{1} }} - e^{{i\beta_{3} }} } \right)\beta_{4}^{2} }}{{\left( {e^{{i\beta_{3} }} - e^{{i\beta_{4} }} } \right)\beta_{2}^{2} + \left( { - e^{{i\beta_{2} }} + e^{{i\beta_{4} }} } \right)\beta_{3}^{2} + \left( {e^{{i\beta_{2} }} - e^{{i\beta_{3} }} } \right)\beta_{4}^{2} }} \hfill \\ c_{3} = \frac{{\left( { - e^{{i\beta_{2} }} + e^{{i\beta_{4} }} } \right)\beta_{1}^{2} + \left( {e^{{i\beta_{1} }} - e^{{i\beta_{4} }} } \right)\beta_{2}^{2} - \left( {e^{{i\beta_{1} }} - e^{{i\beta_{2} }} } \right)\beta_{4}^{2} }}{{\left( { - e^{{i\beta_{3} }} + e^{{i\beta_{4} }} } \right)\beta_{2}^{2} + \left( {e^{{i\beta_{2} }} - e^{{i\beta_{4} }} } \right)\beta_{3}^{2} - \left( {e^{{i\beta_{2} }} - e^{{i\beta_{3} }} } \right)\beta_{4}^{2} }} \hfill \\ c_{4} = \frac{{\left( { - e^{{i\beta_{2} }} + e^{{i\beta_{3} }} } \right)\beta_{1}^{2} + \left( {e^{{i\beta_{1} }} - e^{{i\beta_{3} }} } \right)\beta_{2}^{2} - \left( {e^{{i\beta_{1} }} - e^{{i\beta_{2} }} } \right)\beta_{3}^{2} }}{{\left( {e^{{i\beta_{3} }} - e^{{i\beta_{4} }} } \right)\beta_{2}^{2} + \left( { - e^{{i\beta_{2} }} + e^{{i\beta_{4} }} } \right)\beta_{3}^{2} + \left( {e^{{i\beta_{2} }} - e^{{i\beta_{3} }} } \right)\beta_{4}^{2} }} \hfill \\ \end{gathered}$$

Clamped–Clamped Support

Support condition:

$$\begin{gathered} \beta_{1}^{{}} \left( {\left( {e^{{i\beta_{1} }} - e^{{i\beta_{2} }} } \right)} \right.\left( {e^{{i\beta_{3} }} - e^{{i\beta_{4} }} } \right)\beta_{2} - \left( {e^{{i\beta_{1} }} - e^{{i\beta_{3} }} } \right)\left( {e^{{i\beta_{2} }} - e^{{i\beta_{4} }} } \right)\beta_{3}^{{}} + \left( {e^{{i\beta_{2} }} - e^{{i\beta_{3} }} } \right)\left( {e^{{i\beta_{1} }} - e^{{i\beta_{4} }} } \right)\left. {\beta_{4} } \right) \hfill \\ + \beta_{2}^{{}} \left( {\left( {e^{{i\beta_{2} }} - e^{{i\beta_{3} }} } \right)} \right.\left( {e^{{i\beta_{1} }} - e^{{i\beta_{4} }} } \right)\beta_{3} - \left( {e^{{i\beta_{1} }} - e^{{i\beta_{3} }} } \right)\left( {e^{{i\beta_{2} }} - e^{{i\beta_{4} }} } \right)\left. {\left. {\beta_{4} } \right)} \right)\left( {e^{{i\beta_{2} }} - e^{{i\beta_{4} }} } \right)\left. {\left. {\beta_{4} } \right)} \right) \hfill \\ + \left( {\left( {e^{{i\beta_{1} }} - e^{{i\beta_{2} }} } \right)} \right.\left( {e^{{i\beta_{3} }} - e^{{i\beta_{4} }} } \right)\beta_{3} \beta_{4} = 0 \hfill \\ \end{gathered}$$

The coefficients in the mode shapes

$$\begin{gathered} c_{2} = \frac{{\left( { - e^{{i\beta_{3} }} + e^{{i\beta_{4} }} } \right)\beta_{1} + \left( {e^{{i\beta_{1} }} - e^{{i\beta_{4} }} } \right)\beta_{3} - \left( {e^{{i\beta_{1} }} - e^{{i\beta_{3} }} } \right)\beta_{4} }}{{\left( {e^{{i\beta_{3} }} - e^{{i\beta_{4} }} } \right)\beta_{2} + \left( { - e^{{i\beta_{2} }} + e^{{i\beta_{4} }} } \right)\beta_{3} + \left( {e^{{i\beta_{2} }} - e^{{i\beta_{3} }} } \right)\beta_{4} }} \hfill \\ c_{3} = \frac{{\left( { - e^{{i\beta_{2} }} + e^{{i\beta_{4} }} } \right)\beta_{1} + \left( {e^{{i\beta_{1} }} - e^{{i\beta_{4} }} } \right)\beta_{2} - \left( {e^{{i\beta_{1} }} - e^{{i\beta_{2} }} } \right)\beta_{4} }}{{\left( { - e^{{i\beta_{3} }} + e^{{i\beta_{4} }} } \right)\beta_{2} + \left( {e^{{i\beta_{2} }} - e^{{i\beta_{4} }} } \right)\beta_{3} - \left( {e^{{i\beta_{2} }} - e^{{i\beta_{3} }} } \right)\beta_{4} }} \hfill \\ c_{4} = \frac{{\left( { - e^{{i\beta_{2} }} + e^{{i\beta_{3} }} } \right)\beta_{1} + \left( {e^{{i\beta_{1} }} - e^{{i\beta_{3} }} } \right)\beta_{2} - \left( {e^{{i\beta_{1} }} - e^{{i\beta_{2} }} } \right)\beta_{3} }}{{\left( {e^{{i\beta_{3} }} - e^{{i\beta_{4} }} } \right)\beta_{2} + \left( { - e^{{i\beta_{2} }} + e^{{i\beta_{4} }} } \right)\beta_{3} + \left( {e^{{i\beta_{2} }} - e^{{i\beta_{3} }} } \right)\beta_{4} }} \hfill \\ \end{gathered}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bağdatli, S.M., Togun, N. Nonlinear Vibrations of a Nanobeams Rested on Nonlinear Elastic Foundation Under Primary Resonance Excitation. Iran J Sci Technol Trans Mech Eng (2023). https://doi.org/10.1007/s40997-023-00709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40997-023-00709-y

Keywords

Navigation