Skip to main content
Log in

Nonlinear Static Analysis of a Bi-directional Functionally Graded Microbeam Based on a Nonlinear Elastic Foundation Using Modified Couple Stress Theory

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present paper, a size-dependent Euler–Bernoulli beam model has been developed for nonlinear static analysis of a bidirectional functionally graded (BFG) microbeam based on a nonlinear elastic foundation according to the modified couple stress theory. In order to eliminate stretching and bending coupling caused by the non-symmetrical material variation along with the thickness, the problem is formulated with regard to the physical middle surface. By using Hamilton’s principle, the underlying equations of motion, as well as the relevant boundary conditions of the problem, were deduced. The generalized differential quadrature method (GDQM) has also been utilized for solving the underlying equations for pinned–pinned (PP) and clamped–clamped (CC) boundary conditions to obtain the natural frequencies of the BFG microbeam. The precision of the present solution is evaluated through comparing the nonlinear static deflection provided by the proposed approach with the results available from previous studies. The results show that the average error of the proposed approach with the results available from previous studies is 1.3%. In addition, a parametric study has been performed to explore the impacts of the gradient indices, material length scale parameter, end supports, and the stiffness coefficients of the nonlinear foundation on the nonlinear static deflection of the BFG microbeam. The results indicate that the increase in KNL has increased the value of WNL/WL, and the effect of KNL on the increase in nonlinear deflection is more than that of linear deflection. Furthermore, the results illustrate that incrementing dimensionless length scale parameter l0 increases the nonlinear deflection ratio WNL/WL so that increasing l0 from 0.25 to 1 increases the nonlinear deflection ratio for KP = 10 by about 4%, while for KP = 100, it is about 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aydogdu, M.; Taskin, V.: Free vibration analysis of functionally graded beams with simply supported edges. Mater. Des. 28, 1651–1656 (2007). https://doi.org/10.1016/j.matdes.2006.02.007

    Article  Google Scholar 

  2. Sina, S.A.; Navazi, H.M.; Haddadpour, H.: An analytical method for free vibration analysis of functionally graded beams. Mater. Des. 30, 741–747 (2009). https://doi.org/10.1016/j.matdes.2008.05.015

    Article  Google Scholar 

  3. Huang, Y.; Li, X.-F.: A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. J. Sound Vib. 329, 2291–2303 (2010). https://doi.org/10.1016/j.jsv.2009.12.029

    Article  Google Scholar 

  4. Simsek, M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 240, 697–705 (2010). https://doi.org/10.1016/j.nucengdes.2009.12.013

    Article  Google Scholar 

  5. Li, S.-R.; Batra, R.C.: Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler–Bernoulli beams. Compos. Struct. 95, 5–9 (2013). https://doi.org/10.1016/j.compstruct.2012.07.027

    Article  Google Scholar 

  6. Machado, S.P.; Piovan, M.T.: Nonlinear dynamics of rotating box FGM beams using nonlinear normal modes. Thin-Walled Struct. 62, 158–168 (2013). https://doi.org/10.1016/j.tws.2012.09.005

    Article  Google Scholar 

  7. Hemmatnezhad, M.; Ansari, R.; Rahimi, G.H.: Large-amplitude free vibrations of functionally graded beams by means of a finite element formulation. Appl. Math. Model. 37, 8495–8504 (2013). https://doi.org/10.1016/j.apm.2013.03.055

    Article  MathSciNet  Google Scholar 

  8. Ebrahimi, F.; Zia, M.: Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities. Acta Astronaut. 116, 117–125 (2015). https://doi.org/10.1016/j.actaastro.2015.06.014

    Article  Google Scholar 

  9. Wang, Z.; Wang, X.; Xu, G.; Cheng, S.; Zeng, T.: Free vibration of two-directional functionally graded beams. Compos. Struct. 135, 191–198 (2016). https://doi.org/10.1016/j.compstruct.2015.09.013

    Article  Google Scholar 

  10. Ji, X.; Wang, Y.; Ma, Q.; Okazaki, T.: Cyclic behavior of very short steel shear links. J. Struct. Eng. (United States) (2016). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001375

    Article  Google Scholar 

  11. Simsek, M.; Kocaturk, T.: Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Compos. Struct. 90, 465–473 (2009). https://doi.org/10.1016/j.compstruct.2009.04.024

    Article  Google Scholar 

  12. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  13. Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  14. Korayem, M.H.; Homayooni, A.: The size-dependent analysis of multilayer micro-cantilever plate with piezoelectric layer incorporated voltage effect based on a modified couple stress theory. Eur. J. Mech. A/Solids 61, 59–72 (2017). https://doi.org/10.1016/j.euromechsol.2016.08.013

    Article  MathSciNet  MATH  Google Scholar 

  15. Habibnejad Korayem, M.; Hashemi, A.; Habibnejad Korayem, A.: Multilayered non-uniform atomic force microscope piezoelectric microcantilever control and vibration analysis considering different excitation based on the modified couple stress theory. Microsc. Res. Tech. 84, 943–954 (2021). https://doi.org/10.1002/jemt.23655

    Article  Google Scholar 

  16. Lim, C.W.; Zhang, G.; Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015). https://doi.org/10.1016/j.jmps.2015.02.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Asghari, M.; Rahaeifard, M.; Kahrobaiyan, M.H.; Ahmadian, M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32, 1435–1443 (2011). https://doi.org/10.1016/j.matdes.2010.08.046

    Article  MATH  Google Scholar 

  18. Ansari, R.; Gholami, R.; Sahmani, S.: Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos. Struct. 94, 221–228 (2011). https://doi.org/10.1016/j.compstruct.2011.06.024

    Article  Google Scholar 

  19. Eltaher, M.A.; Emam, S.A.; Mahmoud, F.F.: Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218, 7406–7420 (2012). https://doi.org/10.1016/j.amc.2011.12.090

    Article  MathSciNet  MATH  Google Scholar 

  20. Ke, L.-L.; Wang, Y.-S.; Yang, J.; Kitipornchai, S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50, 256–267 (2012). https://doi.org/10.1016/j.ijengsci.2010.12.008

    Article  MathSciNet  MATH  Google Scholar 

  21. Eltaher, M.A.; Emam, S.A.; Mahmoud, F.F.: Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013). https://doi.org/10.1016/j.compstruct.2012.09.030

    Article  Google Scholar 

  22. Simsek, M.; Yurtcu, H.H.: Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 97, 378–386 (2013). https://doi.org/10.1016/j.compstruct.2012.10.038

    Article  Google Scholar 

  23. Rahmani, O.; Pedram, O.: Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int. J. Eng. Sci. 77, 55–70 (2014). https://doi.org/10.1016/j.ijengsci.2013.12.003

    Article  MathSciNet  MATH  Google Scholar 

  24. Chaht, F.L.; Kaci, A.; Houari, M.S.A.; Tounsi, A.; Beg, O.A.; Mahmoud, S.R.: Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos. Struct. 18, 425–442 (2015). https://doi.org/10.12989/scs.2015.18.2.425

    Article  Google Scholar 

  25. Shafiei, N.; Kazemi, M.; Ghadiri, M.: Nonlinear vibration of axially functionally graded tapered microbeams. Int. J. Eng. Sci. 102, 12–26 (2016). https://doi.org/10.1016/j.ijengsci.2016.02.007

    Article  MathSciNet  MATH  Google Scholar 

  26. Ghayesh, M.H.; Farokhi, H.; Gholipour, A.: Oscillations of functionally graded microbeams. Int. J. Eng. Sci. 110, 35–53 (2017). https://doi.org/10.1016/j.ijengsci.2016.09.011

    Article  MathSciNet  MATH  Google Scholar 

  27. Barretta, R.; Feo, L.; Luciano, R.: Torsion of functionally graded nonlocal viscoelastic circular nanobeams. Compos. Part B Eng. 72, 217–222 (2015). https://doi.org/10.1016/j.compositesb.2014.12.018

    Article  Google Scholar 

  28. Talebizadehsardari, P.; Eyvazian, A.; Gorji Azandariani, M.; Nhan Tran, T.; Kumar Rajak, D.; Babaei Mahani, R.: Buckling analysis of smart beams based on higher order shear deformation theory and numerical method. Steel Compos. Struct. 35, 635–640 (2020). https://doi.org/10.12989/scs.2020.35.5.635

    Article  Google Scholar 

  29. Korayem, M.H.; Korayem, A.H.: Modeling of AFM with a piezoelectric layer based on the modified couple stress theory with geometric discontinuities. Appl. Math. Model. 45, 439–456 (2017). https://doi.org/10.1016/j.apm.2017.01.008

    Article  MathSciNet  MATH  Google Scholar 

  30. Korayem, M.H.; Homayooni, A.: Non-classic multi scale analysis of 2D-manipulation with AFM based on modified couple stress theory. Comput. Mater. Sci. 114, 33–39 (2016). https://doi.org/10.1016/j.commatsci.2015.12.002

    Article  Google Scholar 

  31. Jia, X.L.; Ke, L.L.; Feng, C.B.; Yang, J.; Kitipornchai, S.: Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change. Compos. Struct. 133, 1137–1148 (2015). https://doi.org/10.1016/j.compstruct.2015.08.044

    Article  Google Scholar 

  32. Niknam, H.; Fallah, A.; Aghdam, M.M.: Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading. Int. J. Non-Linear Mech. 65, 141–147 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.05.011

    Article  Google Scholar 

  33. Ansari, R.; Pourashraf, T.; Gholami, R.: An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin-Walled Struct. 93, 169–176 (2015). https://doi.org/10.1016/j.tws.2015.03.013

    Article  Google Scholar 

  34. Simsek, M.: Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Compos. Part B Eng. 56, 621–628 (2014). https://doi.org/10.1016/j.compositesb.2013.08.082

    Article  Google Scholar 

  35. Komijani, M.; Esfahani, S.E.; Reddy, J.N.; Liu, Y.P.; Eslami, M.R.: Nonlinear thermal stability and vibration of pre/post-buckled temperature- and microstructure-dependent functionally graded beams resting on elastic foundation. Compos. Struct. 112, 292–307 (2014). https://doi.org/10.1016/j.compstruct.2014.01.041

    Article  Google Scholar 

  36. Wu, H.L.; Yang, J.; Kitipornchai, S.: Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections. Compos. Part B Eng. 90, 86–96 (2016). https://doi.org/10.1016/j.compositesb.2015.12.007

    Article  Google Scholar 

  37. Hosseini-Hashemi, S.; Nazemnezhad, R.; Bedroud, M.: Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity. Appl. Math. Model. 38, 3538–3553 (2014). https://doi.org/10.1016/j.apm.2013.11.068

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, L.; Hu, Y.: Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 107, 77–97 (2016). https://doi.org/10.1016/j.ijengsci.2016.07.011

    Article  MathSciNet  MATH  Google Scholar 

  39. Simsek, M.: Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int. J. Eng. Sci. 105, 12–27 (2016). https://doi.org/10.1016/j.ijengsci.2016.04.013

    Article  MathSciNet  MATH  Google Scholar 

  40. Nejad, M.Z.: Hadi A. Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams. Int. J. Eng. Sci. 106, 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  41. Nejad, M.Z.; Hadi, A.: Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams. Int. J. Eng. Sci. 105, 1–11 (2016). https://doi.org/10.1016/j.ijengsci.2016.04.011

    Article  MathSciNet  MATH  Google Scholar 

  42. Nejad, M.Z.; Hadi, A.; Rastgoo, A.: Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory. Int. J. Eng. Sci. 103, 1–10 (2016). https://doi.org/10.1016/j.ijengsci.2016.03.001

    Article  MathSciNet  MATH  Google Scholar 

  43. Shafiei, N.; Kazemi, M.: Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams. Aerosp. Sci. Technol. 66, 1–11 (2017). https://doi.org/10.1016/j.ast.2017.02.019

    Article  Google Scholar 

  44. Shafiei, N.; Mirjavadi, S.S.; MohaselAfshari, B.; Rabby, S.; Kazemi, M.: Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput. Methods Appl. Mech. Eng. 322, 615–632 (2017). https://doi.org/10.1016/j.cma.2017.05.007

    Article  MathSciNet  MATH  Google Scholar 

  45. Chong, A.C.M.; Yang, F.; Lam, D.C.C.; Tong, P.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16, 1052–1058 (2001). https://doi.org/10.1557/JMR.2001.0146

    Article  Google Scholar 

  46. Stölken, J.S.; Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998). https://doi.org/10.1016/S1359-6454(98)00153-0

    Article  Google Scholar 

  47. Ma, H.; Gao, X.; Reddy, J.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008). https://doi.org/10.1016/j.jmps.2008.09.007

    Article  MathSciNet  MATH  Google Scholar 

  48. Su, H.; Banerjee, J.R.; Cheung, C.W.: Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Compos. Struct. 106, 854–862 (2013). https://doi.org/10.1016/j.compstruct.2013.06.029

    Article  Google Scholar 

  49. Simsek, M.: Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. Compos. Struct. 112, 264–272 (2014). https://doi.org/10.1016/j.compstruct.2014.02.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Gholami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorji Azandariani, M., Gholami, M., Vaziri, E. et al. Nonlinear Static Analysis of a Bi-directional Functionally Graded Microbeam Based on a Nonlinear Elastic Foundation Using Modified Couple Stress Theory. Arab J Sci Eng 46, 12641–12651 (2021). https://doi.org/10.1007/s13369-021-06053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06053-0

Keywords

Navigation