Skip to main content
Log in

Study on Vibration Isolation Performance of Double-Layer Wave Impeding Block Based on Wave Impedance Ratio

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Based on the theory of single-phase elastic media and unsaturated porous media, the vibration isolation effect of double-layer wave impeding block (WIB) in the unsaturated soil foundation is investigated. Using the Fourier transform and Helmholtz vector decomposition, the calculation formula of the dynamic response of unsaturated ground subjected to a strip harmonic load on the ground surface is established. By analyzing the wave impedance ratio at the interface between the double-layer WIB and the unsaturated soil foundation on the vibration isolation effect of the double-layer WIB, the corresponding interlayer wave impedance ratio of the double-layer WIB with the best vibration isolation effect is selected. On this basis, the influence of load frequency, saturation, thickness, and embedded depth on the vibration isolation performance of the double-layer WIB is analyzed. The results show that the best vibration isolation effect of the double-layer WIB can be obtained by designing the wave impedance ratio at the intersection between the layers of the double-layer WIB. At the same thickness, the vibration isolation effect of the double-layer WIB is better than that of the homogeneous WIB. The double-layer WIB enhances the frequency width of homogeneous WIB vibration damping, which has a better vibration isolation effect on low-frequency, medium-frequency and high-frequency vibration (5 Hz < f < 70 Hz). When the thickness of double-layer WIB exceeds the critical thickness, the vibration isolation effect decreases with the increase in thickness. Soil saturation has a significant effect on the vibration isolation effect of the double-layer WIB, and the double-layer WIB can achieve a better vibration isolation effect at high saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ba ZN, Liu SP, Wu MT et al (2022) Analytical solution for isolation effect of plane SH waves by periodically distributed piles. Rock Soil Mech 41:2861–2868

    Google Scholar 

  • Chouw N, Le R, Schmid G (1991) An approach to reduce foundation vibrations and soil waves using dynamic transmitting behavior of a soil layer. Bauingenieur 66:215–221

    Google Scholar 

  • Gao GY (1998) Theory and application of ground vibration isolation by discontinuous barrier. Zhejiang University, CHN

    Google Scholar 

  • Gao GY, Wang F, Chen GQ (2014) Active vibration isolation of the saturated ground with wave impeding block inside and under the load of the travelling train. J Vib Eng 27:433–440

    Google Scholar 

  • Gao GY, Chen J, Gu XQ et al (2017) Numerical study on the active vibration isolation by wave impeding block in saturated soils under vertical loading. Soil Dyn Earthq Eng 93:99–112

    Article  Google Scholar 

  • Gao GY, Zhang QW, Chen J et al (2018) Field experiments and numerical analysis on the ground vibration isolation of WIB under horizontal and rocking coupled excitations. Soil Dyn Earthq Eng 115:507–512

    Article  Google Scholar 

  • Gao M, Tian SP, Wang Y et al (2020) Isolation of ground vibration induced by high speed railway by DXWIB: Field investigation. Soil Dyn Earthq Eng 131:106039

    Article  Google Scholar 

  • Gao M, Zhang ZS, Wang CG et al (2021) Field test on vibration isolation performance by WIB-Duxseal under vertical excitation. Rock Soil Mech 42:537–546

    Google Scholar 

  • Huang L, Liu Z, Wu C et al (2022) A three-dimensional indirect boundary integral equation method for the scattering of seismic waves in a poroelastic layered half-space. Eng Anal Bound Elem 135:167–181

    Article  MathSciNet  MATH  Google Scholar 

  • Li ZJ, He Z, Tan Y et al (2011) (2011) Isolation analysis of low-frequency vibration from high speed railways by using HWIB. J Huazhong Univ Sci Technol (Nat Sci Ed) 39:34–38

    Google Scholar 

  • Li Y, Di H, Zhou S et al (2021) Seismic analysis for cross transfer subway stations in soft soil stratum. KSCE J Civ Eng 25:1732–1745

    Article  Google Scholar 

  • Liu ZX, Fu ZY, Miao Y et al (2019) 3D simulation for broadband scattering of rayleigh wave by discontinuous barrier based on FMP-IBEM. J Vib Shock 38:89–97

    Google Scholar 

  • Lu Z, Fang R, Yao H et al (2018) Dynamic responses of unsaturated half-space soil to a moving harmonic rectangular load. Int J Numer Anal Methods Geomech 42:1057–1077

    Article  Google Scholar 

  • Ma Q, Zhou FX, Liu J (2017) Analysis of ground vibration control by graded wave impeding block. J Chin J Theor Appl 49:1360–1369

    Google Scholar 

  • Ma Q, Zhou FX, Zhang WY (2019) Vibration isolation of saturated foundations by functionally graded wave impeding block under a moving load. J Braz Soc Mech Sci Eng 41:108

    Article  Google Scholar 

  • Schevenels M, Lombaert G (2017) Double wall barriers for the reduction of ground vibration transmission. Soil Dyn Earthq Eng 97:1–13

    Article  Google Scholar 

  • Shi LW, Ma Q, Ma YX (2021) Dynamic responses of unsaturated half-space soils to a strip load at different boundary conditions. Arab J Geosci 14:1–11

    Article  Google Scholar 

  • Shu JH, Ma Q, Zhou FX et al (2022) Study on the propagation characteristics of P1 wave passing through wave impeding block in unsaturated soil. Rock Soil Mech 43:1–13

    Google Scholar 

  • Takemiya H, Fujiwara A (1994) Wave propagation / impediment in a stratum and wave impeding block (WIB) measured for SSI response reduction. Soil Dyn Earthq Eng 13:49–61

    Article  Google Scholar 

  • Tian SP, Gao M, Wang Y et al (2020) Numerical analysis and field experiment on vibration isolation for Duxseal. Rock Soil Mech 42:1770–1780

    Google Scholar 

  • Woods RD (1968) Screening of surface waves in soils. J Soil Mech Found Div 94:951–979

    Article  Google Scholar 

  • Xiang GW (2011) Numerical and experimental study on vibration isolation measures with barriers. Shanghai Jiao Tong university, CHN

    Google Scholar 

  • Xie WP, Gao JT, Mao Y (2019) WIB for mitigation analysis of subway-induced low-frequency vibration. J Civ Eng Manag 26:1–4

    Google Scholar 

  • Xu MJ, Wei DM (2009) Characteristics of wave propagation in partially saturated poroelastic media. Sci Tech Eng 9:5403–5409

    Google Scholar 

  • Xu MJ, Wei DM (2011) 3D non-axisymmetric dynamic response of unsaturated soils. J Eng Mech 28:78–85

    Google Scholar 

  • Xu P, Zhou FX, Xia TD (2015) Review on passive vibration isolation using barriers. J China Earthq Eng 37:88–93

    Google Scholar 

  • Zhou FX, Zheng Q (2019) Complex variable function solution of vibration isolation for two-dimension foundation WIB. J Vib Shock 38:162–167

    Google Scholar 

  • Zhou FX, Cao YC, Zhao WG (2015) Analysis of dynamic response of inhomogeneous subgrade under moving loads. Rock Soil Mech 36:2027–2033

    Google Scholar 

  • Zienkiewicz OC, Chang CT, Beetts P (1980) Drained, undrained, consolidating and dynamic behavior assumptions in soils. Geotechnqiue 30:385–395

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Chinese Natural Science Foundation (Grant No. 52168053) and Qinghai Province Science and Technology Department Project(No. 2021-ZJ-943Q), the authors are also grateful to reviewers for them helpful advice and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ma.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Appendices

Appendix A

\(\beta_{1} = - B_{1} a_{12} a_{23} + B_{1} a_{13} a_{22} + B_{2} a_{11} a_{23} - B_{2} a_{13} a_{21} - B_{3} a_{11} a_{22} + B_{3} a_{12} a_{21} - \mu_{p} a_{12} a_{23} + \mu_{p} a_{13} a_{22}\),\(\begin{gathered} \beta_{2} = - B_{1} a_{12} b_{33} + B_{1} a_{13} b_{32} + B_{1} a_{22} b_{23} - B_{1} a_{23} b_{22} + B_{2} a_{11} b_{33} - B_{2} a_{13} b_{31} - B_{2} a_{21} b_{23} + B_{2} a_{23} b_{21} - \hfill \\ B_{3} a_{11} b_{32} + B_{3} a_{12} b_{31} + B_{3} a_{21} b_{22} - B_{3} a_{22} b_{21} - a_{11} a_{22} b_{13} + a_{11} a_{23} b_{12} + a_{12} a_{21} b_{13} - a_{12} a_{23} b_{11} - a_{13} a_{21} b_{12} \hfill \\ + a_{13} a_{22} b_{11} - \mu_{p} a_{12} b_{33} + \mu_{p} a_{13} b_{32} + \mu_{p} a_{22} b_{23} - \mu_{p} a_{23} b_{22} \hfill \\ \end{gathered}\),\(\begin{gathered} \beta_{3} = - B_{1} b_{22} b_{33} + B_{1} b_{23} b_{32} + B_{2} b_{21} b_{33} - B_{2} b_{23} b_{31} - B_{3} b_{21} b_{32} + B_{3} b_{22} b_{31} + a_{11} b_{12} b_{33} - a_{11} b_{13} b_{32} - a_{12} b_{11} b_{33} \hfill \\ + a_{12} b_{13} b_{31} + a_{13} b_{11} b_{32} - a_{13} b_{12} b_{31} - a_{21} b_{12} b_{23} + a_{21} b_{13} b_{22} + a_{22} b_{11} b_{23} - a_{22} b_{13} b_{21} - a_{23} b_{11} b_{22} + a_{23} b_{12} b_{21} - \hfill \\ \mu_{p} b_{22} b_{33} + \mu_{p} b_{23} b_{32} \hfill \\ \end{gathered}\),\(\beta_{4} = - b_{11} b_{22} b_{33} + b_{11} b_{23} b_{32} + b_{12} b_{21} b_{33} - b_{12} b_{23} b_{31} - b_{13} b_{21} b_{32} + b_{13} b_{22} b_{31}\),\(\beta_{5} = - \mu_{p} d_{22} d_{33}\),\(\beta_{6} = - d_{11} d_{22} d_{33} + d_{21} d_{12} d_{33} + d_{13} d_{22} d_{31}\).

Appendix B

The expression of the system of Eqs. (35) is:

$$ \begin{gathered} T_{20 \times 20} \left[ \begin{gathered} \begin{array}{*{20}c} {A_{tp1}^{I} } & {A_{tp2}^{I} } & {A_{tp3}^{I} } & {A_{rp1}^{I} } & {A_{rp2}^{I} } & {A_{rp3}^{I} } & {B_{ts}^{I} } & {B_{rs}^{I} } & {A_{1te} } & {A_{1re} } \\ \end{array} \hfill \\ \begin{array}{*{20}c} {B_{1te} } & {B_{1re} } & {A_{2te} } & {A_{2re} } & {B_{2te} } & {B_{2re} } & {A_{tp1}^{II} } & {A_{tp2}^{II} } & {A_{tp3}^{II} } & {B_{ts}^{{II}{}} } \\ \end{array} \hfill \\ \end{gathered} \right]^{T} = \hfill \\ \left[ \begin{gathered} \begin{array}{*{20}c} {q_{0} \frac{\sin (\xi l)}{{\xi l}}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} \hfill \\ \begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ \end{array} \hfill \\ \end{gathered} \right]^{T} \hfill \\ \end{gathered} $$

The elements not 0 in matrix T are:

\(T_{0101} = T_{0104} = \chi_{1}\), \(T_{0102} = T_{0105} = \chi_{2}\), \(T_{0103} = T_{0106} = \chi_{3}\), \(T_{0107} = { - }2\mu_{p} {\text{i}}\xi r\), \(T_{0108} = 2\mu_{p} {\text{i}}\xi r\), \(T_{0201} = { - }2\mu_{p} {\text{i}}\xi \lambda_{1}\), \(T_{0202} = { - }2\mu_{p} {\text{i}}\xi \lambda_{2}\), \(T_{0203} = { - }2\mu_{p} {\text{i}}\xi \lambda_{3}\), \(T_{0204} = 2\mu_{p} {\text{i}}\xi \lambda_{1}\), \(T_{0205} = 2\mu_{p} {\text{i}}\xi \lambda_{2}\), \(T_{0206} = 2\mu_{p} {\text{i}}\xi \lambda_{3}\), \(T_{0207} = T_{0208} { = - }\mu_{p} \left( {r^{2} + \xi^{2} } \right)\), \(T_{0301} = T_{0304} { = }\left( {a_{11} + a_{12} \delta_{p1}^{l} + a_{13} \delta_{p1}^{g} } \right)(\xi^{2} - \lambda_{1}^{2} )\), \(T_{0302} = T_{0305} { = }\left( {a_{11} + a_{12} \delta_{p2}^{l} + a_{13} \delta_{p2}^{g} } \right)(\xi^{2} - \lambda_{2}^{2} )\), \(T_{0303} = T_{0306} { = }\left( {a_{11} + a_{12} \delta_{p3}^{l} + a_{13} \delta_{p3}^{g} } \right)(\xi^{2} - \lambda_{3}^{2} )\), \(T_{0401} = T_{0304} { = }\left( {a_{21} + a_{22} \delta_{p1}^{l} + a_{23} \delta_{p1}^{g} } \right)(\xi^{2} - \lambda_{1}^{2} )\), \(T_{0402} = T_{0405} { = }\left( {a_{21} + a_{22} \delta_{p2}^{l} + a_{23} \delta_{p2}^{g} } \right)(\xi^{2} - \lambda_{2}^{2} )\), \(T_{0403} = T_{0406} { = }\left( {a_{21} + a_{22} \delta_{p3}^{l} + a_{23} \delta_{p3}^{g} } \right)(\xi^{2} - \lambda_{3}^{2} )\), \(T_{0501} { = }\chi_{1} {\text{e}}^{{{ - }\lambda_{1} H}}\), \(T_{0502} { = }\chi_{2} {\text{e}}^{{{ - }\lambda_{2} H}}\), \(T_{0503} { = }\chi_{3} {\text{e}}^{{{ - }\lambda_{3} H}}\), \(T_{0504} { = }\chi_{1} {\text{e}}^{{\lambda_{1} H}}\), \(T_{0505} { = }\chi_{2} {\text{e}}^{{\lambda_{2} H}}\), \(T_{0506} { = }\chi_{3} {\text{e}}^{{\lambda_{3} H}}\), \(T_{0507} = { - }2\mu_{p} {\text{i}}\xi r{\text{e}}^{ - rH}\), \(T_{0508} = 2\mu_{p} {\text{i}}\xi r{\text{e}}^{rH}\), \(T_{0509} = \left[ {\lambda_{1e} \xi^{2} + \alpha_{1e}^{2} (\lambda_{1e} + 2\mu_{1e} )} \right]{\text{e}}^{{ - {\text{i}}\alpha_{1e} H}}\), \(T_{0510} = \left[ {\lambda_{1e} \xi^{2} + \alpha_{1e}^{2} (\lambda_{1e} + 2\mu_{1e} )} \right]{\text{e}}^{{{\text{i}}\alpha_{1e} H}}\), \(T_{0511} = { - 2}\mu_{1e} \xi \beta_{1e} {\text{e}}^{{ - {\text{i}}\beta_{1e} H}}\), \(T_{0512} = {2}\mu_{1e} \xi \beta_{1e} {\text{e}}^{{{\text{i}}\beta_{1e} H}}\), \(T_{0601} = { - }2\mu_{p} {\text{i}}\xi \lambda_{1} {\text{e}}^{{ - \lambda_{1} H}}\), \(T_{0602} = { - }2\mu_{p} {\text{i}}\xi \lambda_{2} {\text{e}}^{{ - \lambda_{2} H}}\), \(T_{0603} = { - }2\mu_{p} {\text{i}}\xi \lambda_{3} {\text{e}}^{{ - \lambda_{3} H}}\), \(T_{0604} = 2\mu_{p} {\text{i}}\xi \lambda_{1} {\text{e}}^{{\lambda_{1} H}}\), \(T_{0605} = 2\mu_{p} {\text{i}}\xi \lambda_{2} {\text{e}}^{{\lambda_{2} H}}\), \(T_{0606} = 2\mu_{p} {\text{i}}\xi \lambda_{3} {\text{e}}^{{\lambda_{3} H}}\), \(T_{0607} = { - }\mu_{p} \left( {r^{2} + \xi^{2} } \right){\text{e}}^{{{ - }rH}}\), \(T_{0608} = { - }\mu_{p} \left( {r^{2} + \xi^{2} } \right){\text{e}}^{rH}\), \(T_{0609} = { - 2}\mu_{1e} \xi \alpha_{1e} {\text{e}}^{{{\text{ - i}}\alpha_{1e} H}}\), \(T_{0610} = {2}\mu_{1e} \xi \alpha_{1e} {\text{e}}^{{{\text{i}}\alpha_{1e} H}}\), \(T_{0611} = \mu_{1e} \left( {\xi^{2} { - }\beta_{1e}^{2} } \right){\text{e}}^{{{\text{ - i}}\beta_{1e} H}}\), \(T_{0612} = \mu_{1e} \left( {\xi^{2} { - }\beta_{1e}^{2} } \right){\text{e}}^{{{\text{i}}\beta_{1e} H}}\), \(T_{0701} = { - }\lambda_{1} {\text{e}}^{{ - \lambda_{1} H}}\), \(T_{0701} = { - }\lambda_{2} {\text{e}}^{{ - \lambda_{2} H}}\), \(T_{0703} = { - }\lambda_{3} {\text{e}}^{{ - \lambda_{3} H}}\), \(T_{0704} = \lambda_{1} {\text{e}}^{{\lambda_{1} H}}\), \(T_{0705} = \lambda_{2} {\text{e}}^{{\lambda_{2} H}}\), \(T_{0706} = \lambda_{3} {\text{e}}^{{\lambda_{3} H}}\), \(T_{0707} = {\text{i}}\xi {\text{e}}^{ - rH}\), \(T_{0708} = {\text{i}}\xi {\text{e}}^{rH}\), \(T_{0709} = {\text{i}}\alpha_{1e} {\text{e}}^{{ - {\text{i}}\alpha_{1e} H}}\), \(T_{0710} = {\text{ - i}}\alpha_{1e} {\text{e}}^{{{\text{i}}\alpha_{1e} H}}\), \(T_{0711} = {\text{ - i}}\xi {\text{e}}^{{{\text{ - i}}\beta_{1e} H}}\), \(T_{0712} = {\text{ - i}}\xi {\text{e}}^{{{\text{i}}\beta_{1e} H}}\), \(T_{0801} = {\text{i}}\xi {\text{e}}^{{ - \lambda_{1} H}}\), \(T_{0802} = {\text{i}}\xi {\text{e}}^{{ - \lambda_{2} H}}\), \(T_{0803} = {\text{i}}\xi {\text{e}}^{{ - \lambda_{3} H}}\), \(T_{0804} = {\text{i}}\xi {\text{e}}^{{\lambda_{1} H}}\), \(T_{0805} = {\text{i}}\xi {\text{e}}^{{\lambda_{2} H}}\), \(T_{0806} = {\text{i}}\xi {\text{e}}^{{\lambda_{3} H}}\), \(T_{0807} = r{\text{e}}^{ - rH}\), \(T_{0808} = { - }r{\text{e}}^{rH}\), \(T_{0809} = {\text{ - i}}\xi {\text{e}}^{{{\text{ - i}}\alpha_{1e} H}}\), \(T_{0810} = {\text{ - i}}\xi {\text{e}}^{{{\text{i}}\alpha_{1e} H}}\), \(T_{0811} = {\text{ - i}}\beta_{1e} {\text{e}}^{{ - {\text{i}}\beta_{1e} H}}\), \(T_{0812} = {\text{i}}\beta_{1e} {\text{e}}^{{{\text{i}}\beta_{1e} H}}\), \(T_{0901} = \lambda_{1} (1 - \delta_{p1}^{l} ){\text{e}}^{{ - \lambda_{1} H}}\), \(T_{0902} = \lambda_{2} (1 - \delta_{p2}^{l} ){\text{e}}^{{ - \lambda_{2} H}}\), \(T_{0903} = \lambda_{3} (1 - \delta_{p3}^{l} ){\text{e}}^{{ - \lambda_{3} H}}\), \(T_{0904} = \lambda_{1} (\delta_{p1}^{l} - 1){\text{e}}^{{\lambda_{1} H}}\), \(T_{0905} = \lambda_{2} (\delta_{p2}^{l} - 1){\text{e}}^{{\lambda_{2} H}}\), \(T_{0906} = \lambda_{3} (\delta_{p3}^{l} - 1){\text{e}}^{{\lambda_{3} H}}\), \(T_{0907} = {\text{i}}\xi \left( {\delta_{s}^{l} - 1} \right){\text{e}}^{ - rH}\), \(T_{0908} = {\text{i}}\xi \left( {\delta_{s}^{l} - 1} \right){\text{e}}^{rH}\), \(T_{1001} = \lambda_{1} (1 - \delta_{p1}^{g} ){\text{e}}^{{ - \lambda_{1} H}}\), \(T_{1002} = \lambda_{2} (1 - \delta_{p2}^{g} ){\text{e}}^{{ - \lambda_{2} H}}\), \(T_{1003} = \lambda_{3} (1 - \delta_{p3}^{g} ){\text{e}}^{{ - \lambda_{3} H}}\), \(T_{1004} = \lambda_{1} (\delta_{p1}^{g} - 1){\text{e}}^{{\lambda_{1} H}}\), \(T_{1005} = \lambda_{2} (\delta_{p2}^{g} - 1){\text{e}}^{{\lambda_{2} H}}\), \(T_{1006} = \lambda_{3} (\delta_{p3}^{g} - 1){\text{e}}^{{\lambda_{3} H}}\), \(T_{1007} = {\text{i}}\xi \left( {\delta_{s}^{g} - 1} \right){\text{e}}^{ - rH}\), \(T_{1008} = {\text{i}}\xi \left( {\delta_{s}^{g} - 1} \right){\text{e}}^{rH}\), \(T_{1109} = - \left[ {\lambda_{1e} \xi^{2} + \alpha_{1e}^{2} (\lambda_{1e} + 2\mu_{1e} )} \right]{\text{e}}^{{ - {\text{i}}\alpha_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1110} = - \left[ {\lambda_{1e} \xi^{2} + \alpha_{1e}^{2} (\lambda_{1e} + 2\mu_{1e} )} \right]{\text{e}}^{{{\text{i}}\alpha_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1111} = 2\mu_{1e} \xi \beta_{1e} {\text{e}}^{{ - {\text{i}}\beta_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1112} = - 2\mu_{1e} \xi \beta_{1e} {\text{e}}^{{ - {\text{i}}\beta_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1113} = \left[ {\lambda_{2e} \xi^{2} + \alpha_{2e}^{2} (\lambda_{2e} + 2\mu_{2e} )} \right]{\text{e}}^{{ - {\text{i}}\alpha_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1114} = \left[ {\lambda_{2e} \xi^{2} + \alpha_{2e}^{2} (\lambda_{2e} + 2\mu_{2e} )} \right]{\text{e}}^{{{\text{i}}\alpha_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1115} = - 2\mu_{2e} \xi \beta_{2e} {\text{e}}^{{ - {\text{i}}\beta_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1115} = - 2\mu_{2e} \xi \beta_{2e} {\text{e}}^{{ - {\text{i}}\beta_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1116} = 2\mu_{2e} \xi \beta_{2e} {\text{e}}^{{{\text{i}}\beta_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1209} = 2\mu_{1e} \xi \alpha_{1e} {\text{e}}^{{ - {\text{i}}\alpha_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1210} = - 2\mu_{1e} \xi \alpha_{1e} {\text{e}}^{{{\text{i}}\alpha_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1211} = \mu_{1e} \left( {\beta_{1e}^{2} - \xi^{2} } \right){\text{e}}^{{{\text{ - i}}\beta_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1212} = \mu_{1e} \left( {\beta_{1e}^{2} - \xi^{2} } \right){\text{e}}^{{{\text{i}}\beta_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1213} = - 2\mu_{2e} \xi \alpha_{2e} {\text{e}}^{{ - {\text{i}}\alpha_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1214} = 2\mu_{2e} \xi \alpha_{2e} {\text{e}}^{{{\text{i}}\alpha_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1215} = \mu_{2e} \left( {\xi^{2} - \beta_{2e}^{2} } \right){\text{e}}^{{{\text{ - i}}\beta_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1216} = \mu_{2e} \left( {\xi^{2} - \beta_{2e}^{2} } \right){\text{e}}^{{{\text{i}}\beta_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1309} = - {\text{i}}\alpha_{1e} {\text{e}}^{{ - {\text{i}}\alpha_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1310} = {\text{i}}\alpha_{1e} {\text{e}}^{{{\text{i}}\alpha_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1311} = {\text{i}}\xi {\text{e}}^{{ - {\text{i}}\beta_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1312} = {\text{i}}\xi {\text{e}}^{{{\text{i}}\beta_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1313} = {\text{i}}\alpha_{2e} {\text{e}}^{{ - {\text{i}}\alpha_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1314} = - {\text{i}}\alpha_{2e} {\text{e}}^{{{\text{i}}\alpha_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1315} = - {\text{i}}\xi {\text{e}}^{{ - {\text{i}}\beta_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1316} = - {\text{i}}\xi {\text{e}}^{{{\text{i}}\beta_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1409} = {\text{i}}\xi {\text{e}}^{{ - {\text{i}}\alpha_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1410} = {\text{i}}\xi {\text{e}}^{{{\text{i}}\alpha_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1411} = {\text{i}}\beta_{1e} {\text{e}}^{{ - {\text{i}}\beta_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1412} = - {\text{i}}\beta_{1e} {\text{e}}^{{{\text{i}}\beta_{1e} \left( {H + h_{w1} } \right)}}\), \(T_{1413} = - {\text{i}}\xi {\text{e}}^{{{\text{ - i}}\alpha_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1414} = - {\text{i}}\xi {\text{e}}^{{{\text{i}}\alpha_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1415} = - {\text{i}}\beta_{2e} {\text{e}}^{{ - {\text{i}}\beta_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1416} = {\text{i}}\beta_{2e} {\text{e}}^{{{\text{i}}\beta_{2e} \left( {H + h_{w1} } \right)}}\), \(T_{1513} = { - }\left[ {\lambda_{2e} \xi^{2} { + }\alpha_{2e}^{2} (\lambda_{2e} + 2\mu_{2e} )} \right]{\text{e}}^{{ - {\text{i}}\alpha_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1514} = { - }\left[ {\lambda_{2e} \xi^{2} { + }\alpha_{2e}^{2} (\lambda_{2e} + 2\mu_{2e} )} \right]{\text{e}}^{{{\text{i}}\alpha_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1515} = {2}\mu_{2e} \xi \beta_{2e} {\text{e}}^{{ - {\text{i}}\beta_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1516} = - {2}\mu_{2e} \xi \beta_{2e} {\text{e}}^{{{\text{i}}\beta_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1517} = - \chi_{1} {\text{e}}^{{{ - }\lambda_{1} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1518} = - \chi_{2} {\text{e}}^{{{ - }\lambda_{2} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1519} = - \chi_{3} {\text{e}}^{{{ - }\lambda_{3} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1520} = 2\mu_{p} {\text{i}}\xi r{\text{e}}^{{ - r\left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1613} = {2}\mu_{2e} \xi \alpha_{2e} {\text{e}}^{{{\text{ - i}}\alpha_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1614} = - {2}\mu_{2e} \xi \alpha_{2e} {\text{e}}^{{{\text{i}}\alpha_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1615} = \mu_{2e} \left( {\beta_{2e}^{2} { - }\xi^{2} } \right){\text{e}}^{{{\text{ - i}}\beta_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1616} = \mu_{2e} \left( {\beta_{2e}^{2} { - }\xi^{2} } \right){\text{e}}^{{{\text{i}}\beta_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1617} = 2\mu_{p} {\text{i}}\xi \lambda_{1} {\text{e}}^{{ - \lambda_{1} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1618} = 2\mu_{p} {\text{i}}\xi \lambda_{2} {\text{e}}^{{ - \lambda_{2} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1619} = 2\mu_{p} {\text{i}}\xi \lambda_{3} {\text{e}}^{{ - \lambda_{3} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1620} = \mu_{p} \left( {r^{2} + \xi^{2} } \right){\text{e}}^{{{ - }r\left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1713} = {\text{ - i}}\alpha_{2e} {\text{e}}^{{ - {\text{i}}\alpha_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1714} = {\text{i}}\alpha_{2e} {\text{e}}^{{{\text{i}}\alpha_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1715} = {\text{i}}\xi {\text{e}}^{{{\text{ - i}}\beta_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1716} = {\text{i}}\xi {\text{e}}^{{{\text{i}}\beta_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1717} = \lambda_{1} {\text{e}}^{{ - \lambda_{1} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1718} = \lambda_{2} {\text{e}}^{{ - \lambda_{2} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1719} = \lambda_{3} {\text{e}}^{{ - \lambda_{3} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1720} = - {\text{i}}\xi {\text{e}}^{{ - r\left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1813} = {\text{i}}\xi {\text{e}}^{{{\text{ - i}}\alpha_{2e} \left( {H{ + }h_{w1} + h_{w2} )} \right)}}\), \(T_{1814} = {\text{i}}\xi {\text{e}}^{{{\text{i}}\alpha_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1815} = {\text{i}}\beta_{2e} {\text{e}}^{{ - {\text{i}}\beta_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1816} = - {\text{i}}\beta_{2e} {\text{e}}^{{{\text{i}}\beta_{2e} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1817} = {\text{ - i}}\xi {\text{e}}^{{ - \lambda_{1} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1818} = {\text{ - i}}\xi {\text{e}}^{{ - \lambda_{2} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1819} = {\text{ - i}}\xi {\text{e}}^{{ - \lambda_{3} \left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1820} = { - }r{\text{e}}^{{ - r\left( {H{ + }h_{w1} + h_{w2} } \right)}}\), \(T_{1917} = \lambda_{1} {\text{e}}^{{ - \lambda_{1} \left( {H{ + }h_{w1} + h_{w2} } \right)}} (\delta_{p1}^{l} { - }1)\), \(T_{1918} = \lambda_{2} {\text{e}}^{{ - \lambda_{2} \left( {H{ + }h_{w1} + h_{w2} } \right)}} (\delta_{p2}^{l} { - }1)\), \(T_{1919} = \lambda_{3} {\text{e}}^{{ - \lambda_{3} \left( {H{ + }h_{w1} + h_{w2} } \right)}} (\delta_{p3}^{l} { - }1)\), \(T_{1920} = {\text{i}}\xi {\text{e}}^{{ - r\left( {H{ + }h_{w1} + h_{w2} } \right)}} \left( {1{ - }\delta_{s}^{l} } \right)\), \(T_{2017} = \lambda_{1} {\text{e}}^{{ - \lambda_{1} \left( {H{ + }h_{w1} + h_{w2} } \right)}} (\delta_{p1}^{g} { - }1)\), \(T_{2018} = \lambda_{2} {\text{e}}^{{ - \lambda_{2} \left( {H{ + }h_{w1} + h_{w2} } \right)}} (\delta_{p2}^{g} { - }1)\), \(T_{2019} = \lambda_{3} {\text{e}}^{{ - \lambda_{3} \left( {H{ + }h_{w1} + h_{w2} } \right)}} (\delta_{p3}^{g} { - }1)\), \(T_{2020} = {\text{i}}\xi {\text{e}}^{{ - r\left( {H{ + }h_{w1} + h_{w2} } \right)}} \left( {1{ - }\delta_{s}^{g} } \right)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Ma, Q. & Zhang, W. Study on Vibration Isolation Performance of Double-Layer Wave Impeding Block Based on Wave Impedance Ratio. Iran J Sci Technol Trans Mech Eng 47, 1191–1203 (2023). https://doi.org/10.1007/s40997-022-00574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-022-00574-1

Keywords

Navigation