Skip to main content
Log in

Free Vibration and Stability Study of an Axially Rotating Circular Cylindrical Shell Made of Shape Memory Alloy

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The free vibrations and stability of a simply supported thin-wall circular cylindrical shell made of shape memory alloy (SMA) with axially rotational motion are analyzed in this article. In this regard, the material damping and the structural damping effects of the shell on its vibration and stability are studied. A set of constitutive equations including convenient variables is utilized to consider the material properties. Hamilton’s principle is employed to extract a set of three equations governing the vibrations of the thin SMA circular cylindrical shell in radial direction for super-elastic state of the material, i.e., SMA. The governing equations of the shell are discriminated using Galerkin method and solved by the multiple scale method and the differential quadrature method to find its natural frequencies and its instability that may occur by external excitation. Critical rotational speeds, which predict the resonance of the shell and consequently its stable interval, are calculated as well. In this analysis, the influence of super-elasticity characteristic, phase transformation phenomenon of the material on the frequency response of the shell are investigated. The study presents phase transformation hysteresis property of SMA for rotating thin-walled circular cylindrical shell when speeding up and speeding down.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abid F et al (2021) An approach for the reliability-based design optimization of shape memory alloy structure. Mech Based Des Struct Mach 49(2):155–171

    Article  Google Scholar 

  • Amabili M (2008) Nonlinear vibrations and stability of shells and plates. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Aoki T, Shimamoto A (2003) Active vibration control of epoxy matrix composite beams with embedded shape memory alloy TiNi fibers. Int J Mod Phys B 17(08n09):1744–1749

    Article  Google Scholar 

  • Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review

  • Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242

    Article  Google Scholar 

  • Brinson L, Lammering R (1993) Finite element analysis of the behavior of shape memory alloys and their applications. Int J Solids Struct 30(23):3261–3280

    Article  MATH  Google Scholar 

  • Chen Y et al (1993) Vibrations of high speed rotating shells with calculations for cylindrical shells. J Sound Vib 160(1):137–160

    Article  MATH  Google Scholar 

  • Dang X-H et al (2020) Free vibration characteristics of rotating functionally graded porous circular cylindrical shells with different boundary conditions. Iran J Sci Technol Trans Mech Eng 1–17

  • Dumanskiy S (2020) Stability analysis of a round cross-section rod from shape memory alloys at reverse phase transition. In: IOP conference series: materials science and engineering. IOP Publishing

  • Ebrahimi M, Moeinfar A, Shakeri M (2016) Nonlinear free vibration of hybrid composite moving beams embedded with shape memory alloy fibers. Int J Struct Stab Dyn 16(07):1550032

    Article  MathSciNet  MATH  Google Scholar 

  • Forouzesh F, Jafari AA (2015) Radial vibration analysis of pseudoelastic shape memory alloy thin cylindrical shells by the differential quadrature method. Thin-Walled Struct 93:158–168

    Article  Google Scholar 

  • Haddadpour H, Mahmoudkhani S, Navazi H (2007) Free vibration analysis of functionally graded cylindrical shells including thermal effects. Thin-Walled Struct 45(6):591–599

    Article  Google Scholar 

  • He Y-Y et al (2006) Vibration control of a rotor–bearing system using shape memory alloy: I. Theory. Smart Mater Struct 16(1):114

    Article  Google Scholar 

  • Heydarpour Y, Aghdam M, Malekzadeh P (2014a) Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells. Compos Struct 117:187–200

    Article  MATH  Google Scholar 

  • Heydarpour Y, Malekzadeh P, Aghdam M (2014b) Free vibration of functionally graded truncated conical shells under internal pressure. Meccanica 49(2):267–282

    Article  MathSciNet  MATH  Google Scholar 

  • Jani JM et al (2014) A review of shape memory alloy research, applications and opportunities. Mater Design 56:1078–1113

    Article  Google Scholar 

  • Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, Berlin

    MATH  Google Scholar 

  • Lam K, Loy C (1995) Analysis of rotating laminated cylindrical shells by different thin shell theories. J Sound Vib 186(1):23–35

    Article  MATH  Google Scholar 

  • Liu A-R et al (2017) A method of reinforcement and vibration reduction of girder bridges using shape memory alloy cables. Int J Struct Stab Dyn 17(07):1750076

    Article  MathSciNet  Google Scholar 

  • Love AEH (1888) XVI. The small free vibrations and deformation of a thin elastic shell. Philos Trans R Soc Lond (a) 179:491–546

    Article  MATH  Google Scholar 

  • Mohamadi A, Shahgholi M, Ghasemi FA (2019) Free vibration and stability of an axially moving thin circular cylindrical shell using multiple scales method. Meccanica 54(14):2227–2246

    Article  MathSciNet  Google Scholar 

  • Mohamadi A, Ashenai Ghasemi F, Shahgholi M (2021) Nonlinear vibration, stability, and bifurcation analysis of axially moving and spinning cylindrical shells. Mech Based Des Struct Mach 1–31

  • Najafov A, Sofiyev A, Kuruoglu N (2014) Vibration analysis of nonhomogeneous orthotropic cylindrical shells including combined effect of shear deformation and rotary inertia. Meccanica 49(10):2491–2502

    Article  MathSciNet  MATH  Google Scholar 

  • Nayfeh AH (2011) Introduction to perturbation techniques. Wiley, New York

    MATH  Google Scholar 

  • Nekouei M, Raghebi M, Mohammadi M (2020) Free vibration analysis of hybrid laminated composite cylindrical shells reinforced with shape memory alloy fibers. J Vib Control 26(7–8):610–626

    Article  MathSciNet  MATH  Google Scholar 

  • Nemat-Nasser S et al (2005) Experimental observation of high-rate buckling of thin cylindrical shape-memory shells. In: Smart structures and materials 2005: active materials: behavior and mechanics. International Society for Optics and Photonics

  • Sadd MH (2009) Elasticity: theory, applications, and numerics. Academic Press, London

    Google Scholar 

  • Samson RM et al (2020) Vibration analysis of nitinol shape memory alloy in carbon fibre reinforced polymer composites. In: IOP conference series: materials science and engineering. IOP Publishing

  • Savi MA, De Paula AS, Lagoudas DC (2011) Numerical investigation of an adaptive vibration absorber using shape memory alloys. J Intell Mater Syst Struct 22(1):67–80

    Article  Google Scholar 

  • Sofiyev A, Hui D (2019) On the vibration and stability of FGM cylindrical shells under external pressures with mixed boundary conditions by using FOSDT. Thin-Walled Struct 134:419–427

    Article  Google Scholar 

  • Sofiyev A, Kuruoglu N (2013) Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium. Compos B Eng 45(1):1133–1142

    Article  Google Scholar 

  • Sofiyev A, Kuruoglu N (2014) Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressures. Thin-Walled Struct 78:121–130

    Article  Google Scholar 

  • Sofiyev A et al (2016) Stability and vibration of sandwich cylindrical shells containing a functionally graded material core with transverse shear stresses and rotary inertia effects. Proc Inst Mech Eng C J Mech Eng Sci 230(14):2376–2389

    Article  Google Scholar 

  • Suzuki Y, Kagawa Y (2010) Active vibration control of a flexible cantilever beam using shape memory alloy actuators. Smart Mater Struct 19(8):085014

    Article  Google Scholar 

  • Talebitooti M (2019) Three-dimensional free vibration analysis and critical speed of pressurized rotating functionally graded cylindrical shells. Iran J Sci Technol Trans Mech Eng 43(2):113–126

    Article  Google Scholar 

  • Wang YQ, Liang L, Guo XH (2013) Internal resonance of axially moving laminated circular cylindrical shells. J Sound Vib 332(24):6434–6450

    Article  Google Scholar 

  • Xu L et al (2019) A three-dimensional constitutive modeling for shape memory alloys considering two-way shape memory effect and transformation-induced plasticity. In: AIAA Scitech 2019 forum

  • Yang T et al (2013) Closed-form approximate solution for natural frequency of axially moving beams. Int J Mech Sci 74:154–160

    Article  Google Scholar 

Download references

Funding

The authors have received no financial support for this research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Rahmani Hanzaki.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest with respect the research, authorship, and/or publication of this article.

Appendices

Appendix 1

In this portion, the relation of SMA that is mentioned in Sect. 2 is given.

$${b}^{A}=-\Delta {s}_{0}\left({A}_{f}-{A}_{s}\right), { b}^{M}=-\Delta {s}_{0}\left({M}_{s}-{M}_{f}\right),{\mu }_{1}=\frac{1}{2}\rho \Delta {s}_{0}\left({M}_{s}+{A}_{f}\right)-\rho \Delta {u}_{0}$$
(87)
$${\mu }_{2}=\frac{1}{4}\rho \Delta {s}_{0}\left({A}_{s}-{A}_{f}+{M}_{s}-{M}_{f}\right)-\rho \Delta {u}_{0}$$
(88)
$$\Lambda =\left\{\begin{array}{c}\frac{3}{2}H\frac{{\sigma }^{{\prime}}}{{\tilde{\sigma }}^{{\prime}}}, \dot{\eta }>0\\ H\frac{{\varepsilon }^{t}}{\overline{{\varepsilon }_{t}}}, \dot{\eta }<0\end{array}\right.$$
(89)
$$\tilde{\sigma }={\left(\frac{3}{2}{\sigma }^{{\prime}}:{\sigma }^{{\prime}}\right)}^\frac{1}{2}={\left(\frac{3}{2}{\parallel {\sigma }^{{\prime}}\parallel }^{2}\right)}^\frac{1}{2}$$
(90)
$$\overline{{\varepsilon }^{t}}={\left(\frac{2}{3}{\varepsilon }^{t}:{\varepsilon }^{t}\right)}^\frac{1}{2}={\left(\frac{3}{2}{\parallel {\varepsilon }^{t}\parallel }^{2}\right)}^\frac{1}{2}$$
(91)
$$Y=\frac{1}{4}\rho \Delta {s}_{0}\left({M}_{s}+{M}_{f}-{A}_{s}-{A}_{f}\right)$$
(92)
$$\Delta {\varepsilon }_{q+1}^{t k}=\Delta {\eta }_{q+1}^{k}{\Lambda }_{q+1}^{k}$$
(93)
$$\Delta {\sigma }_{q+1}^{t k}=-\Delta {\eta }_{q+1}^{k}{S}_{q+1}^{k -1}:\left(\left\{\begin{array}{c}{\partial }_{\sigma }{\phi }_{q+1}^{k}, \dot{\eta }>0\\ -{\partial }_{\sigma }{\phi }_{q+1}^{k}, \dot{\eta }<0\end{array}\right)\right.$$
(94)
$${\phi }_{q+1}^{k}+{\partial }_{\upsigma }{\phi }_{q+1}^{k}:\Delta {\sigma }_{q+1}^{k}+{\partial }_{\upeta }{\phi }_{q+1}^{k}\Delta {\eta }_{q+1}^{k}=0$$
$$\Delta {\eta }_{q+1}^{k}=\left\{\begin{array}{c}\frac{{\upphi }_{q+1}^{k}}{{\partial }_{\upsigma }{\upphi }_{q+1}^{k}:{\mathrm{D}}_{q+1}^{k}:{\partial }_{\upsigma }{\upphi }_{q+1}^{k}-{\partial }_{\upeta }{\upphi }_{q+1}^{k}}, \dot{\upeta }>0\\ \frac{-{\upphi }_{q+1}^{k}}{{-\partial }_{\upsigma }{\upphi }_{q+1}^{k}:{\mathrm{D}}_{q+1}^{k}:{\partial }_{\upsigma }{\upphi }_{q+1}^{k}-{\partial }_{\upeta }{\upphi }_{q+1}^{k}}, \dot{\upeta }<0\end{array}\right.$$
(95)
$${\varepsilon }_{q+1}^{t(k+1) }={\varepsilon }_{q+1}^{t k}+\Delta {\varepsilon }_{q+1}^{t k}$$
(96)
$${\eta }_{q+1}^{t(k+1) }={\eta }_{q+1}^{t k}+\Delta {\eta }_{q+1}^{t k}$$
(97)
$${\sigma }_{q+1}^{t(k+1) }={\sigma }_{q+1}^{t k}+\Delta {\sigma }_{q+1}^{t k}$$
(98)

Appendix 2

In this portion, the parameters mentioned in Sect. 4 are explored:

$$S_{1} = \frac{{2L^{2} \left( {n^{2} L^{2} + R^{2} \pi^{2} \left( {\mu + 2} \right)} \right)n}}{{\left( {n^{2} L^{2} + R^{2} \pi^{2} } \right)^{2} }}$$
(99)
$$S_{2} = 0$$
(100)
$$S_{3} = \frac{{12\rho L^{2} R^{4} \pi^{2} \left( {L^{2} n^{2} + R^{2} \pi^{2} } \right)^{2} \left( {\upsilon - 1} \right)\left( {1 + \upsilon } \right){\hat{\Omega }}\left( t \right)^{2} - E(h^{2} n^{8} L^{8} + 4L^{6} R^{2} n^{6} \pi^{2} - 12\pi^{4} (R^{2} \left( {\upsilon^{2} - 1} \right).. + 4L^{2} h^{2} R^{6} \pi^{6} n^{2} + h^{2} R^{8} \pi^{8} }}{{12\left( {L^{2} n^{2} + R^{2} \pi^{2} } \right)^{2} }}$$
(101)
$$S_{4} = \frac{{ - 8\rho h\frac{{d{\Omega }\left( t \right)}}{dt} - 8C{\hat{\Omega }}\left( t \right)}}{3\rho hL}$$
(102)
$${a}_{1}=\frac{2{L}^{2}\left({n}^{2}{L}^{2}+{R}^{2}{\pi }^{2}\left(\mu +2\right)\right)n}{{({n}^{2}{L}^{2}+{R}^{2}{\pi }^{2})}^{2}\epsilon {\omega }_{n}}={a}_{11}+\varepsilon {a}_{12}\mathrm{cos}\left(\Omega t\right), {a}_{2}=0$$
(103)
$${b}_{1}={b}_{11}{\left(\widehat{\Omega }\left(t\right)\right)}^{2}+{b}_{12}==\frac{\begin{array}{c}12\rho {L}^{2}{R}^{4}{\pi }^{2}{\left({L}^{2}{n}^{2}+{R}^{2}{\pi }^{2}\right)}^{2}\left(\upsilon -1\right)\left(1+\upsilon \right){\widehat{\Omega }\left(t\right)}^{2}-E({h}^{2}{n}^{8}{L}^{8}+4{L}^{6}{R}^{2}{n}^{6}{\pi }^{2}-12{\pi }^{4}({R}^{2}\left({\upsilon }^{2}-1\right)..\\ +4{L}^{2}{h}^{2}{R}^{6}{\pi }^{6}{n}^{2}+{h}^{2}{R}^{8}{\pi }^{8}\end{array}}{12{\left({L}^{2}{n}^{2}+{R}^{2}{\pi }^{2}\right)}^{2}\epsilon }$$
(104)
$${b}_{2}={b}_{21}{\left(\widehat{\Omega }\left(t\right)\right)}^{2}+{b}_{22}=\frac{\begin{array}{c}-48\rho {L}^{2}{R}^{4}{\pi }^{2}{\left({L}^{2}{n}^{2}+{R}^{2}{\pi }^{2}\right)}^{2}\left(\upsilon -1\right)\left(1+\upsilon \right){\widehat{\Omega }\left(t\right)}^{2}-192E({h}^{2}{n}^{8}{L}^{8}+4{L}^{6}{R}^{2}{n}^{6}{\pi }^{2}..\\ -12{\pi }^{4}({R}^{2}\left({\upsilon }^{2}-1\right)+256{L}^{2}{h}^{2}{R}^{6}{\pi }^{6}{n}^{2}+256{h}^{2}{R}^{8}{\pi }^{8}\end{array}}{12{\left({L}^{2}{n}^{2}+{R}^{2}{\pi }^{2}\right)}^{2}\epsilon }={b}_{21}\left({{\Omega }_{0}}^{2}+\varepsilon \left({\Omega }_{1}{\mathrm{cos}\left({\omega }_{\widehat{\Omega }}t\right)}^{2}\right)\right)+{b}_{22}$$
(105)
$$M =\left(\genfrac{}{}{0pt}{}{1 0}{0 1}\right),C=\left(\begin{array}{cc}0& {a}_{11}\\ {-a}_{11}& 0\end{array}\right),K=(\begin{array}{cc}{\beta }_{1}& 0\\ 0& {\beta }_{2}\end{array})$$
(106)
$${\beta }_{1}={b}_{11}{{\Omega }_{0}}^{2}+{b}_{12},{\beta }_{2}={b}_{21}{{\Omega }_{0}}^{2}+{b}_{22}$$
(107)
$${P}_{i}=\frac{({{\omega }_{i}}^{2}-{\beta }_{1})}{i{a}_{11}{\omega }_{i}}, i=\mathrm{1,2}$$
(108)
$${f}_{11}=\frac{[i\alpha {\omega }_{1}+{a}_{21}{P}_{1}]}{(2i{\omega }_{1}+{a}_{11}{P}_{1})},{f}_{12}=\frac{[i\alpha {\omega }_{2}{P}_{2}+{a}_{21}]}{(2i{\omega }_{1}-{a}_{11})},{f}_{2n}={K}_{1n}+{K}_{3n}\mathrm{cos}\left(\sigma {T}_{1}\right)+i{K}_{3n}\mathrm{sin}\left(\sigma {T}_{1}\right)$$
(109)
$${\mu }_{1n}=\frac{(i{\alpha }_{n}{\omega }_{n}+{a}_{21n}{P}_{n}]}{(2i{\omega }_{n}+{a}_{11n}{P}_{n})},{\mu }_{1m}=\frac{(i{\alpha }_{m}{\omega }_{m}+{a}_{21m}{P}_{m}]}{(2i{\omega }_{m}+{a}_{11m}{P}_{m})},{\mu }_{2n}=\frac{[\frac{{a}_{12+}2{a}_{22}}{2}{p}_{n}{\omega }_{n}-i{b}_{11}{\Omega }_{0}{\Omega }_{1}]}{(2i{\omega }_{n}+{a}_{11}{P}_{n})}$$
(110)
$${\gamma }_{1}=\frac{[i\alpha {\omega }_{2}{P}_{1}-{a}_{21}]}{(2i{\omega }_{2}-{a}_{11})},{\gamma }_{2}=\frac{[i\alpha {\omega }_{1}{P}_{2}-{a}_{21}]}{(2i{\omega }_{2}-{a}_{11})}$$
(111)
$$H_{1} = \frac{{16\hat{\Omega }\left( t \right)}}{3L}{ },{ }H_{2} = \frac{C}{h\rho },{ }H_{3} = \frac{{8\rho h\frac{{d\hat{\Omega }\left( t \right)}}{dt} + 8C\hat{\Omega }\left( t \right)}}{3\rho hL}$$
(112)
$${H}_{4}=\left(\left(-48{\pi }^{2}\left(\nu -1\right)\rho \left(1+\nu \right){R}^{4}{L}^{2}{\left({4R}^{2}{\pi }^{2}+{{n}^{2}L}^{2}\right)}^{2}{\widehat{\Omega }\left(t\right)}^{2}-\left({h}^{2}{{n}^{8}L}^{8}+{16L}^{6}{R}^{2}{h}^{2}{n}^{6}{\pi }^{2}-{192R}^{4}{\pi }^{4}\left({R}^{2}\left({\nu }^{2}-1\right)-\frac{{n}^{4}{h}^{2}}{2}\right){L}^{4}+{256L}^{2}{R}^{6}{h}^{2}{{n}^{2}\pi }^{6}+{256\pi }^{8}{R}^{8}{h}^{2}\right)E\right)/\left(12{L}^{4}{R}^{4}{\left({4R}^{2}{\pi }^{2}+{n}^{2}{L}^{2}\right)}^{2}\rho {\omega }_{n}^{2}\left({\nu }^{2}-1\right)\right)\right)$$
(113)

Appendix 3: Differential quadrature method (DQM)

The first sentences of page 8 was amended and replaced with “in the given domain, the function values be known or desired on a grid of sampling points, where the grid is obtained by taking Nx and Ny points in the x and y directions, respectively.”

$$\frac{{\partial }^{n}f({x}_{i})}{\partial {x}^{n}}=\sum {A}_{ij}^{n}f\left({x}_{i}\right) \quad i=1,\dots ,N, n=1,\dots ,N$$
(114)
$$\frac{{\partial }^{n}f({x}_{i})}{\partial {y}^{n}}=\sum {B}_{ij}^{n}f\left({x}_{i}\right)\quad i=1,\dots ,N, n=1,\dots ,N$$
(115)
$${A}_{IJ}^{(1)}=\frac{\prod ({X}_{I})}{({X}_{I}-{X}_{J})},\quad{ i,j=1,\ldots ,N , i}\neq{{j}}$$
(116)
$${A}_{IJ}^{(k)}=k[{A}_{IJ}^{\left(k-1\right)}.{A}_{IJ}^{\left(1\right)}-\frac{{A}_{IJ}^{\left(k-1\right)}}{\left({x}_{i}-{x}_{j}\right)} ,\quad 2\le k\le N-1$$
(117)
$${A}_{IJ}^{(k)}=-\sum_{j=1,j\ne i}^{N}{A}_{IJ}^{(m)}$$
(118)
$$\prod \left({X}_{I}\right)=\prod_{j=1,j\ne i}^{N}\left({x}_{i}-{x}_{j}\right)$$
(119)

After computing the coefficients, the rth order differential equations can be found.

Then by imposing DQM rule, the governing equations are achieved as

$${[K-}{\Omega }_{n}^{2}{M]}\overrightarrow{\Delta } \, =0$$
(120)

Appendix 4: Nomenclature

\({A}_{f}\)/\({A}_{s}\): Austenite finish/Austenite start


\({C}_{A},{C}_{M}\): relation between temperature and critical stress.


\({E}^{SMA}\left(E,\gamma ,T\right)\): the modulus of the shape memory alloy.


\({E}^{A}\): amount of memory alloy in state of complete austenite.


\({E}^{M}\): amount of memory alloy in state of complete martensite.


\({M}_{f}\)/\({M}_{s}\): Martensite finish/Martensite start.


\(\eta\): Fraction of the martensite.


\({\Omega }_{T}:\) is associated with thermoelastic tensor.


Ω: Dimensionless fluctuation frequency.


\(\widehat{\Omega }\): Rotational speed.


\({\sigma }_{\theta },{\sigma }_{r}\): Stress in \(\theta ,r\) direction

\({\varepsilon }^{t}\): transformation strain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahidi, H., Hanzaki, A.R. & Shahgholi, M. Free Vibration and Stability Study of an Axially Rotating Circular Cylindrical Shell Made of Shape Memory Alloy. Iran J Sci Technol Trans Mech Eng 47, 237–256 (2023). https://doi.org/10.1007/s40997-022-00510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-022-00510-3

Keywords

Navigation