Skip to main content
Log in

Analytical Solution of Hyperbolic Heat Conduction Equation in a Finite Medium Under Pulsatile Heat Source

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a pure analytical solution of one-dimensional hyperbolic heat conduction equation in a homogeneous finite medium under series of time pulsed heat source which is exponentially distributed and acts symmetrically on both sides. The solution is obtained without any numerical procedures, using the Eigenvalue function. The problem is solved under two types of step and exponential time pulse series functions, which are used in simulation of laser interaction of tissues, and the closed-form solutions are introduced. The ability of the solution to estimate the effect of pulse duration and intensity is investigated. The results can be applied as a verification branch for other numerical solutions such as pulse laser interaction phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(c_{\text{p}}\) :

Specific heat at constant pressure

\(H\) :

Heaviside function

\(I\left( t \right)\) :

Laser incident intensity

\(I_{r}\) :

Arbitrary reference laser intensity

\(L\) :

Dimensionless length of the slab

\(l\) :

Length of the slab

\(M\) :

Number of complete pulses

\(m\) :

Coefficient controlling Off period

\(N\) :

Counter of pulses

\(n\) :

Fourier series counter

\(Q\) :

Heat source function

\(q\) :

Heat flux vector

\(R\) :

Surface reflectance

T :

Temperature

\(T_{0} ,T_{m}\) :

Reference temperatures

T p :

Dimensionless step duration

t :

Time

w :

Speed of heat propagation

x :

Cartesian coordinate

X :

Dimensionless Cartesian coordinate

α :

Thermal diffusivity

ρ :

Density

\(\lambda\) :

Thermal conductivity

\(\tau_{q}\) :

Thermal relaxation time

\(\theta\) :

Dimensionless temperature

\(\delta\) :

Dirac function

\(\mu\) :

Penetration coefficient

\(\beta\) :

Dimensionless penetration coefficient

\(\tau\) :

Dimensionless time

\(\psi\) :

Dimensionless heat source function

\(\psi_{0}\) :

Constant coefficient

\(\eta \left( \tau \right)\) :

Dimensionless time-dependent laser function

References

  • Abdel-Hamid B (1999) Modelling non-Fourier heat conduction with periodic thermal oscillation using the finite integral transform. Appl Math Model 23(12):899–914

    Article  MATH  Google Scholar 

  • Ahmadikia H, Moradi A, Fazlali R, Parsa AB (2012) Analytical solution of non-Fourier and Fourier bioheat transfer analysis during laser irradiation of skin tissue. J Mech Sci Technol 26(6):1937–1947

    Article  Google Scholar 

  • Antaki PJ (1997) Analysis of hyperbolic heat conduction in a semi-infinite slab with surface convection. Int J Heat Mass Transf 40(13):3247–3250

    Article  MATH  Google Scholar 

  • Asmar NH (2005) Partial differential equations with Fourier series and boundary value problems. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Barletta A, Pulvirenti B (1998) Hyperbolic thermal waves in a solid cylinder with a non-stationary boundary heat flux. Int J Heat Mass Transf 41(1):107–116

    Article  MATH  Google Scholar 

  • Blackwell BF (1990) Temperature profile in semi-infinite body with exponential source and convective boundary condition. J Heat Transf 112(3):567–571

    Article  Google Scholar 

  • Cattaneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. C R 247(4):431–433

    MATH  Google Scholar 

  • Lewandowska M (2001) Hyperbolic heat conduction in the semi-infinite body with a time-dependent laser heat source. Heat Mass Transf 37(4–5):333–342

    Article  Google Scholar 

  • Lewandowska M, Malinowski L (1998) Hyperbolic heat conduction in the semi-infinite body with the heat source which capacity linearly depends on temperature. Heat Mass Transf 33(5–6):389–393

    Article  Google Scholar 

  • Lewandowska M, Malinowski L (2006) An analytical solution of the hyperbolic heat conduction equation for the case of a finite medium symmetrically heated on both sides. Int Commun Heat Mass Transf 33(1):61–69

    Article  Google Scholar 

  • López-Molina JA, Rivera MJ, Trujillo M, Burdío F, Lequerica JL, Hornero F, Berjano EJ (2008) Assessment of hyperbolic heat transfer equation in theoretical modeling for radiofrequency heating techniques. Open Biomed Eng J 2:22

    Article  Google Scholar 

  • Manns F, Borja D, Parel JM, Smiddy W, Culbertson W (2003) Semianalytical thermal model for sub ablative laser heating of homogeneous nonperfused biological tissue: application to laser thermokeratoplasty. J Biomed Opt 8(2):288–297

    Article  Google Scholar 

  • Moosaie A (2007) Non-Fourier heat conduction in a finite medium subjected to arbitrary periodic surface disturbance. Int Commun Heat Mass Transf 34(8):996–1002

    Article  Google Scholar 

  • Moosaie A (2008a) Non-Fourier heat conduction in a finite medium subjected to arbitrary non-periodic surface disturbance. Int Commun Heat Mass Transf 35(3):376–383

    Article  MathSciNet  Google Scholar 

  • Moosaie A (2008b) Non-Fourier heat conduction in a finite medium with insulated boundaries and arbitrary initial conditions. Int Commun Heat Mass Transf 35(1):103–111

    Article  Google Scholar 

  • O’Neil P (2011) Advanced engineering mathematics. Cengage Learning, Boston

    MATH  Google Scholar 

  • Rasteaar S (1989, August) Hyperbolic heat conduction in pulsed laser irradiation of tissue. In: OE/LASE’89, 15–20 Jan 1989. International Society for Optics and Photonics, Los Angeles, pp 114–117

  • Tang DW, Araki N (1996a) Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance. Int J Heat Mass Transf 39(8):1585–1590

    Article  MATH  Google Scholar 

  • Tang DW, Araki N (1996b) Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance—II. Another form of solution. Int J Heat Mass Transf 39(15):3305–3308

    Article  Google Scholar 

  • Tang DW, Araki N (1996c) Analytical solution of non-Fourier temperature response in a finite medium under laser-pulse heating. Heat Mass Transf 31(5):359–363

    Article  Google Scholar 

  • Tang DW, Araki N (2000) Non-fourier heat condution behavior in finite mediums under pulse surface heating. Mater Sci Eng A 292(2):173–178

    Article  Google Scholar 

  • Tang DS, Hua YC, Nie BD, Cao BY (2016a) Phonon wave propagation in ballistic-diffusive regime. J Appl Phys 119(12):124301

    Article  Google Scholar 

  • Tang DS, Hua YC, Cao BY (2016b) Thermal wave propagation through nanofilms in ballistic-diffusive regime by Monte Carlo simulations. Int J Therm Sci 109:81–89

    Article  Google Scholar 

  • Trujillo M, Rivera MJ, López Molina JA, Berjano EJ (2009) Analytical thermal–optic model for laser heating of biological tissue using the hyperbolic heat transfer equation. Math Med Biol 26(3):187–200

    Article  MATH  Google Scholar 

  • Vernotte P (1958) Les paradoxes de la théorie continue de léquation de la chaleur. C R Hebd Seances Acad Sci 246(22):3154–3155

    MATH  Google Scholar 

  • Zhang MK, Cao BY, Guo YC (2014) Numerical studies on damping of thermal waves. Int J Therm Sci 84:9–20

    Article  Google Scholar 

  • Zhou J, Chen JK, Zhang Y (2007) Theoretical analysis of thermal damage in biological tissues caused by laser irradiation. Mol Cell Biomech 4(1):27

    MATH  Google Scholar 

  • Zubair SM, Chaudhry MA (1996) Heat conduction in a semi-infinite solid due to time-dependent laser source. Int J Heat Mass Transf 39(14):3067–3074

    Article  MATH  Google Scholar 

Download references

Funding

Funding was provided by Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Talaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaee, M.R., Kabiri, A. & Khodarahmi, R. Analytical Solution of Hyperbolic Heat Conduction Equation in a Finite Medium Under Pulsatile Heat Source. Iran J Sci Technol Trans Mech Eng 42, 269–277 (2018). https://doi.org/10.1007/s40997-017-0096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-017-0096-y

Keywords

Navigation