Skip to main content
Log in

Analytical Treatment of the Size-Dependent Nonlinear Postbuckling of Functionally Graded Circular Cylindrical Micro-/Nano-Shells

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Mindlin’s strain gradient theory (SGT) is the most popular size-dependent higher-order gradient elasticity theory capable of describing the mechanical behavior of structures at micro-/nanoscale, in which the strain gradient terms are included in the strain energy density. In this article, based on Mindlin’s SGT and classical Donnell’s shell theory, the size-dependent nonlinear postbuckling characteristics of circular cylindrical micro-/nanoscale shells under the action of axial compressive loads are studied. For some specific values of the gradient-based material parameters, the present general micro-/nano-shell formulation can be reduced to those based on simple forms of the strain gradient elasticity theory such as the modified strain gradient theory and the modified couple stress theory. The micro-/nano-shells are assumed to be made from functionally graded materials whose properties vary across the thickness direction based on a power-law distribution function. To consider the geometric nonlinearity, the von Kármán relations are used. After obtaining the potential energy of the system including strain gradient effects, an analytical variational approach is utilized to solve the postbuckling problem for small-scale shells with simply supported ends. Finally, selected numerical results are presented to investigate the influence of different parameters such as volume fraction index, length scale parameter and radius-to-thickness ratio on the nonlinear postbuckling behavior of micro-/nano-shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasnejad B, Rezazadeh G (2012) Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure. Int J Mech Mater Des 8:381–392

    Article  Google Scholar 

  • Ahn Y, Guckel H, Zook JD (2001) Capacitive microbeam resonator design. J Micromech Microeng 11:70

    Article  Google Scholar 

  • Akgöz B, Civalek Ö (2014a) Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J Vib Control 20:606–616

    Article  MathSciNet  Google Scholar 

  • Akgöz B, Civalek Ö (2014b) Shear deformation beam models for functionally graded microbeams with new shear correction factors. Compos Struct 112:214–225

    Article  Google Scholar 

  • Akgöz B, Civalek Ö (2015a) Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity. Compos Struct 134:294–301

    Article  Google Scholar 

  • Akgöz B, Civalek Ö (2015b) A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech 226:2277–2294

    Article  MathSciNet  MATH  Google Scholar 

  • Ansari R, Gholami R (2015) Dynamic stability of embedded single-walled carbon nanotubes including thermal effects. Iran J Sci Technol Trans Mech Eng 39:153–161

    Google Scholar 

  • Ansari R, Gholami R (2016a) Surface effect on the large amplitude periodic forced vibration of first-order shear deformable rectangular nanoplates with various edge supports. Acta Astronaut 118:72–89

    Article  Google Scholar 

  • Ansari R, Gholami R (2016b) Size-dependent buckling and postbuckling analyses of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. Int J Struct Stab Dyn 16:1750014-1–1750014-26

    Google Scholar 

  • Ansari R, Sahmani S, Rouhi H (2011) Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh–Ritz technique. Comput Mater Sci 50:3050–3055

    Article  Google Scholar 

  • Ansari R, Pourashraf T, Gholami R (2015a) An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin Walled Struct 93:169–176

    Article  Google Scholar 

  • Ansari R, Gholami R, Faghih Shojaei M, Mohammadi V, Darabi MA (2015b) Size-dependent nonlinear bending and postbuckling of functionally graded Mindlin rectangular microplates considering the physical neutral plane position. Compos Struct 127:87–98

    Article  Google Scholar 

  • Ansari R, Gholami R, Norouzzadeh A, Sahmani S (2015c) Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory. Microfluid Nanofluid 19:509–522

    Article  Google Scholar 

  • Ansari R, Norouzzadeh A, Gholami R, Faghih Shojaei M, Darabi M (2016a) Geometrically nonlinear free vibration and instability of fluid-conveying nanoscale pipes including surface stress effects. Microfluid Nanofluid 20:1–14

    Article  Google Scholar 

  • Ansari R, Faghih Shojaei M, Gholami R (2016b) Size-dependent nonlinear mechanical behavior of third-order shear deformable functionally graded microbeams using the variational differential quadrature method. Compos Struct 136:669–683

    Article  Google Scholar 

  • Asghari M, Kahrobaiyan MH, Nikfar M, Ahmadian MT (2012) A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech 223:1233–1249

    Article  MathSciNet  MATH  Google Scholar 

  • Bagherizadeh E, Kiani Y, Eslami M (2011) Mechanical buckling of functionally graded material cylindrical shells surrounded by Pasternak elastic foundation. Compos Struct 93:3063–3071

    Article  Google Scholar 

  • Bigelow AW, Brenner DJ, Garty G, Randers-Pehrson G (2008) Single-particle/single-cell ion microbeams as probes of biological mechanisms. IEEE Trans Plasma Sci 36:1424–1431

    Article  Google Scholar 

  • Bruin GJ, Waldmeier F, Boernsen KO, Pfaar U, Gross G, Zollinger M (2006) A microplate solid scintillation counter as a radioactivity detector for high performance liquid chromatography in drug metabolism: validation and applications. J Chromatogr A 1133:184–194

    Article  Google Scholar 

  • Chen C, Hu H, Dai L (2013) Nonlinear behavior and characterization of a piezoelectric laminated microbeam system. Commun Nonlinear Sci Numer Simul 18:1304–1315

    Article  MathSciNet  MATH  Google Scholar 

  • Dehrouyeh-Semnani AM (2014) A discussion on different non-classical constitutive models of microbeam. Int J Eng Sci 85:66–73

    Article  Google Scholar 

  • Filippini D, Andersson TP, Svensson SP, Lundström I (2003) Microplate based biosensing with a computer screen aided technique. Biosens Bioelectron 19:35–41

    Article  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  • Gao XL, Park SK, Ma HM (2009) Analytical solution for a pressurized thick-walled spherical shell based on a simplified strain gradient elasticity theory. Math Mech Solids 14:747–758

    Article  MathSciNet  MATH  Google Scholar 

  • Gholami R, Darvizeh A, Ansari R, Hosseinzadeh M (2014) Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory. Meccanica 49:1679–1695

    Article  MathSciNet  MATH  Google Scholar 

  • Gholami R, Ansari R, Rouhi H (2015a) Studying the effects of small scale and Casimir force on the non-linear pull-in instability and vibrations of FGM microswitches under electrostatic actuation. Int J Non-Linear Mech 77:193–207

    Article  Google Scholar 

  • Gholami R, Ansari R, Darvizeh A, Sahmani S (2015b) Axial buckling and dynamic stability of functionally graded microshells based on the modified couple stress theory. Int J Struct Stab Dyn 15:1450070

    Article  MathSciNet  MATH  Google Scholar 

  • Gholami R, Darvizeh A, Ansari R, Sadeghi F (2016) Vibration and buckling of first-order shear deformable circular cylindrical micro-/nano-shells based on Mindlin’s strain gradient elasticity theory. Eur J Mech A Solids 58:76–88

    Article  MathSciNet  Google Scholar 

  • Huang H, Han Q (2009) Nonlinear buckling and postbuckling of heated functionally graded cylindrical shells under combined axial compression and radial pressure. Int J Non-Linear Mech 44:209–218

    Article  MATH  Google Scholar 

  • Jia XL, Yang J, Kitipornchai S, Lim CW (2011) Forced vibration of electrically actuated FGM micro-switches. Procedia Eng 14:280–287

    Article  Google Scholar 

  • Jia XL, Yang J, Kitipornchai S, Lim CW (2012) Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation. J Sound Vib 331:3397–3411

    Article  Google Scholar 

  • Ke L-L, Wang Y-S, Yang J, Kitipornchai S (2012) Nonlinear free vibration of size-dependent functionally graded microbeams. Int J Eng Sci 50:256–267

    Article  MathSciNet  Google Scholar 

  • Ke LL, Wang YS, Reddy JN (2014) Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos Struct 116:626–636

    Article  Google Scholar 

  • Koiter WT (1964) Couple stresses in the theory of elasticity, I and II. In: Nederl. Akad. Wetensch. Proc. Ser. B, pp 17–29

  • Krishnan NMA, Ghosh D (2017) Buckling analysis of cylindrical thin-shells using strain gradient elasticity theory. Meccanica 52:1369–1379

    Article  MathSciNet  MATH  Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Lazopoulos KA, Lazopoulos AK (2011) Nonlinear strain gradient elastic thin shallow shells. Eur J Mech A Solids 30:286–292

    Article  MATH  Google Scholar 

  • Lei J, He Y, Zhang B, Liu D, Shen L, Guo S (2015) A size-dependent FG micro-plate model incorporating higher-order shear and normal deformation effects based on a modified couple stress theory. Int J Mech Sci 104:8–23

    Article  Google Scholar 

  • Liu C-C, Yang S-C, Chen C-K (2012) Nonlinear dynamic analysis of micro cantilever beam under electrostatic loading. J Mech 28:63–70

    Article  Google Scholar 

  • Lou J, He L (2015) Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory. Compos Struct 131:810–820

    Article  Google Scholar 

  • McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060

    Article  Google Scholar 

  • Mehralian F, Beni YT (2016) Size-dependent torsional buckling analysis of functionally graded cylindrical shell. Compos B Eng 94:11–25

    Article  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–438

    Article  Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammadi-Alasti B, Rezazadeh G, Borgheei A-M, Minaei S, Habibifar R (2011) On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Compos Struct 93:1516–1525

    Article  Google Scholar 

  • Mustapha KB, Ruan D (2015) Size-dependent axial dynamics of magnetically-sensitive strain gradient microbars with end attachments. Int J Mech Sci 94:96–110

    Article  Google Scholar 

  • Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425

    Article  MATH  Google Scholar 

  • Papargyri-Beskou S, Beskos DE (2009) Stability analysis of gradient elastic circular cylindrical thin shells. Int J Eng Sci 47:1379–1385

    Article  MathSciNet  MATH  Google Scholar 

  • Papargyri-Beskou S, Tsinopoulos SV, Beskos DE (2012) Wave propagation in and free vibrations of gradient elastic circular cylindrical shells. Acta Mech 223:1789–1807

    Article  MathSciNet  MATH  Google Scholar 

  • Sahmani S, Ansari R, Gholami R, Darvizeh A (2013) Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Compos B Eng 51:44–53

    Article  MATH  Google Scholar 

  • Samaali H, Najar F, Choura S, Nayfeh AH, Masmoudi M (2011) A double microbeam MEMS ohmic switch for RF-applications with low actuation voltage. Nonlinear Dyn 63:719–734

    Article  Google Scholar 

  • Seo H, Kim S, Kim JI, Kang H, Jung W, Yeo W-S (2013) Ultrasensitive detection of microRNAs using nanoengineered micro gold shells and laser desorption/ionization time-of-flight MS. Anal Biochem 434:199–201

    Article  Google Scholar 

  • Şimşek M, Reddy JN (2013) Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int J Eng Sci 64:37–53

    Article  MathSciNet  Google Scholar 

  • Singh MP (2009) Application of Biolog FF MicroPlate for substrate utilization and metabolite profiling of closely related fungi. J Microbiol Methods 77:102–108

    Article  Google Scholar 

  • Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115

    Article  Google Scholar 

  • Tadi Beni Y, Mehralian F, Zeighampour H (2016) The modified couple stress functionally graded cylindrical thin shell formulation. Mech Adv Mater Struct 23:791–801

    Article  MATH  Google Scholar 

  • Thai H-T, Choi D-H (2013) Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos Struct 95:142–153

    Article  Google Scholar 

  • Wang L, Liu HT, Ni Q, Wu Y (2013) Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. Int J Eng Sci 71:92–101

    Article  MathSciNet  Google Scholar 

  • Wang Y-G, Lin W-H, Zhou C-L (2014) Nonlinear bending of size-dependent circular microplates based on the modified couple stress theory. Arch Appl Mech 84:391–400

    Article  MATH  Google Scholar 

  • Yamaki N, Simitses GJ (1985) Elastic stability of circular cylindrical shells. J Appl Mech 52:501

    Article  Google Scholar 

  • Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  • Zeighampour H, Tadi Y (2014) Beni, “Cylindrical thin-shell model based on modified strain gradient theory,”. Int J Eng Sci 78:27–47

    Article  Google Scholar 

  • Zhang J, Fu Y (2012) Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47:1649–1658

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang B, He Y, Liu D, Shen L, Lei J (2015) Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory. Compos Struct 119:578–597

    Article  Google Scholar 

  • Zhao J, Zhou S, Wang B, Wang X (2012) Nonlinear microbeam model based on strain gradient theory. Appl Math Model 36:2674–2686

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou X, Wang L (2012) Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory. Micro Nano Lett 7:679–684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Gholami or R. Ansari.

Appendix

Appendix

Herein, the procedure of derivation of governing equations and boundary conditions associated with the small-scale shells based upon the Mindlin’s SGT is presented.

Using Eqs. (6)–(10) and (13) as well as by defining the following relations

$$T_{ijk} = \mathop \int \limits_{ - h/2}^{h/2} \tau_{ijk} {\text{d}}z,\quad M_{ijk} = \mathop \int \limits_{ - h/2}^{h/2} \tau_{ijk} \bar{z}{\text{d}}z$$
(45)

the variations of strain potential energies of small-scale shells corresponding to the classical and higher-order stresses can be stated as follows

$$\delta \varPi_{C} = \mathop \int \limits_{A}^{ } \left\{ {N_{xx} \delta \phi_{0} + M_{xx} \delta \phi_{1} + N_{yy} \delta \varphi_{0} + M_{yy} \delta \varphi_{1} + N_{xy} \delta \kappa_{0} + M_{xy} \delta \kappa_{1} } \right\}{\text{d}}A,$$
(46)
$$\delta \varPi_{NC} = \int_{A} {\left\{ {T_{xxx} \delta \left( {\frac{{\partial \phi_{0} }}{\partial x}} \right) + M_{xxx} \delta \left( {\frac{{\partial \phi_{1} }}{\partial x}} \right) + T_{yxx} \delta \left( {\frac{{\partial \phi_{0} }}{\partial y}} \right) + M_{yxx} \delta \left( {\frac{{\partial \phi_{1} }}{\partial y}} \right) + T_{zxx} \delta \phi_{1} + T_{xyy} \delta \left( {\frac{{\partial \varphi_{0} }}{\partial x}} \right) + M_{xyy} \left( {\frac{{\partial \varphi_{1} }}{\partial x}} \right) + T_{yyy} \delta \left( {\frac{{\partial \varphi_{0} }}{\partial y}} \right) + M_{yyy} \delta \left( {\frac{{\partial \varphi_{1} }}{\partial y}} \right) + T_{zyy} \delta \varphi_{1} + T_{xxy} \delta \left( {\frac{{\partial \kappa_{0} }}{\partial x}} \right) + M_{xxy} \delta \left( {\frac{{\partial \kappa_{1} }}{\partial x}} \right) + T_{yyx} \delta \left( {\frac{{\partial \kappa_{0} }}{\partial y}} \right) + M_{yyx} \delta \left( {\frac{{\partial \kappa_{1} }}{\partial y}} \right) + T_{zxy} \delta \kappa_{1} - \frac{{T_{yxz} }}{R}\delta \kappa_{0} - \frac{{M_{yxz} }}{R}\delta \kappa_{1} - \frac{{2T_{yyz} }}{R}\delta \varphi_{0} - \frac{{2M_{yyz} }}{R}\delta \varphi_{1} } \right\}}$$
(47)

Moreover, the variation of work done by the external in-plane loads \(\left( {N_{x}^{0} , N_{yy}^{0} {\text{and}} N_{xy}^{0} } \right)\) and external transverse load \(q\) can be expressed as

$$\delta \varPi_{P} = \mathop \int \limits_{A}^{ } \left[ {N_{xx}^{0} \frac{\partial w}{\partial x}\delta \frac{\partial w}{\partial x} + N_{xy}^{0} \frac{\partial w}{\partial x}\delta \frac{\partial w}{\partial y} + N_{xy}^{0} \frac{\partial w}{\partial y}\delta \frac{\partial w}{\partial x} + N_{yy}^{0} \frac{\partial w}{\partial y}\delta \frac{\partial w}{\partial y} + q\frac{\partial w}{\partial y}w} \right]{\text{d}}A$$
(48)

By utilizing the principle of virtual work and calculus of variations, the governing equations can be obtained from Eqs. (46)–(48) as the following form:

$$\frac{{\partial \bar{N}_{xx} }}{\partial x} + \frac{{\partial \bar{N}_{xy} }}{\partial y} = 0,$$
(49)
$$\frac{{\partial \bar{N}_{yx} }}{\partial x} + \frac{{\partial \bar{N}_{yy} }}{\partial y} = 0,$$
(50)
$$\frac{{\partial^{2} \bar{M}_{xx} }}{{\partial x^{2} }} + 2\frac{{\partial^{2} \bar{M}_{xy} }}{\partial y\partial x} + \frac{{\partial^{2} \bar{M}_{yy} }}{{\partial y^{2} }} - \frac{{\bar{N}_{yy} }}{R} + \frac{\partial }{\partial x}\left( {\bar{N}_{xx} \frac{\partial w}{\partial x}} \right) + \frac{\partial }{\partial x}\left( {\bar{N}_{xy} \frac{\partial w}{\partial y}} \right) + \frac{\partial }{\partial y}\left( {\bar{N}_{xy} \frac{\partial w}{\partial x}} \right) + \frac{\partial }{\partial y}\left( {\bar{N}_{yy} \frac{\partial w}{\partial y}} \right) + N_{xx}^{0} \frac{{\partial^{2} w}}{{\partial x^{2} }} + 2N_{xy}^{0} \frac{{\partial^{2} w}}{\partial x\partial y} + N_{yy}^{0} \frac{{\partial^{2} w}}{{\partial y^{2} }} + q = 0.$$
(51)

Moreover, the corresponding boundary conditions are obtained as

$$\delta u = 0\quad {\text{or}}\quad \tilde{N}_{xx} n_{x} + \tilde{N}_{xy} n_{y} = 0$$
(52)
$$\delta v = 0\quad {\text{or}}\quad \tilde{N}_{xy} n_{x} + \tilde{N}_{yy} n_{y} = 0$$
(53)
$$\delta w = 0 or \left( {\frac{{\partial \tilde{M}_{xx} }}{\partial x} + \frac{{\partial \tilde{M}_{xy} }}{\partial y} + \tilde{N}_{xx} \frac{\partial w}{\partial x} + \tilde{N}_{xy} \frac{\partial w}{\partial y} + \frac{{T_{xyy} }}{R}} \right)n_{x} + \left( {\frac{{\partial \tilde{M}_{yy} }}{\partial y} + \frac{{\partial \tilde{M}_{xy} }}{\partial x} + \tilde{N}_{yy} \frac{\partial w}{\partial y} + \tilde{N}_{xy} \frac{\partial w}{\partial x} + \frac{{T_{yyy} }}{R}} \right)n_{y} = 0$$
(54)
$$\delta \left( {\frac{\partial w}{\partial x}} \right) = 0\quad {\text{or}}\quad \left( {\tilde{M}_{xx} - T_{xxx} \frac{\partial w}{\partial x} - T_{xxy} \frac{\partial w}{\partial y}} \right)n_{x} + \left( {\tilde{M}_{xy} - T_{yxx} \frac{\partial w}{\partial x} - T_{yyx} \frac{\partial w}{\partial y}} \right)n_{y} = 0,$$
(55)
$$\delta \left( {\frac{\partial w}{\partial y}} \right) = 0\quad {\text{or}}\quad \left( {\tilde{M}_{xy} - T_{xxy} \frac{\partial w}{\partial x} - T_{xyy} \frac{\partial w}{\partial y}} \right)n_{x} + \left( {\tilde{M}_{yy} - T_{yyx} \frac{\partial w}{\partial x} - T_{yyy} \frac{\partial w}{\partial y}} \right)n_{y} = 0,$$
(56)
$$\delta \left( {\frac{\partial u}{\partial x}} \right) = 0\quad {\text{or}}\quad T_{xxx} n_{x} + T_{yxx} n_{y} = 0, \quad \delta \left( {\frac{\partial u}{\partial y}} \right) = 0\quad {\text{or}}\quad T_{xxy} n_{x} + T_{yyx} n_{y} = 0$$
(57)
$$\delta \left( {\frac{\partial v}{\partial x}} \right) = 0 \quad {\text{or}}\quad T_{xxy} n_{x} + T_{yyx} n_{y} = 0,\quad \delta \left( {\frac{\partial v}{\partial y}} \right) = 0\quad {\text{or}}\quad T_{xyy} n_{x} + T_{yyy} n_{y} = 0$$
(58)
$$\delta \left( {\frac{{\partial^{2} w}}{{\partial x^{2} }}} \right) = 0 \quad {\text{or}}\quad M_{xxx} n_{x} + M_{yxx} n_{y} = 0$$
(59)
$$\delta \left( {\frac{{\partial^{2} w}}{{\partial y^{2} }}} \right) = 0\quad {\text{or}}\quad M_{xyy} n_{x} + M_{yyy} n_{y} = 0$$
(60)
$$\delta \left( {\frac{{\partial^{2} w}}{\partial x\partial y}} \right) = 0\quad {\text{or}}\quad M_{xxy} n_{x} + M_{yyx} n_{y} = 0$$
(61)

where

$$\begin{aligned} & \bar{N}_{xx} = N_{xx} - \frac{{\partial T_{xxx} }}{\partial x} - \frac{{\partial T_{yxx} }}{\partial y}, \quad \bar{N}_{yy} = N_{yy} - \frac{{\partial T_{xyy} }}{\partial x} - \frac{{\partial T_{yyy} }}{\partial y} - \,\frac{{2T_{yyz} }}{R}, \\ & \bar{N}_{xy} = N_{xy} - \frac{{\partial T_{xxy} }}{\partial x} - \frac{{\partial T_{yyx} }}{\partial y} - \frac{{T_{yxz} }}{R}, \quad \bar{M}_{xx} = M_{xx} + T_{zxx} - \frac{{\partial M_{xxx} }}{\partial x} - \frac{{\partial M_{yxx} }}{\partial y}, \\ & \bar{M}_{yy} = M_{yy} + T_{zyy} - \frac{{\partial M_{xyy} }}{\partial x} - \frac{{\partial M_{yyy} }}{\partial y} - \frac{{2M_{yyz} }}{R}, \\ & \bar{M}_{xy} = M_{xy} + T_{zxy} - \frac{{\partial M_{xxy} }}{\partial x} - \frac{{\partial M_{yyx} }}{\partial y} - \frac{{M_{yxz} }}{R}. \\ \end{aligned}$$
(62)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, R., Darvizeh, A., Ansari, R. et al. Analytical Treatment of the Size-Dependent Nonlinear Postbuckling of Functionally Graded Circular Cylindrical Micro-/Nano-Shells. Iran J Sci Technol Trans Mech Eng 42, 85–97 (2018). https://doi.org/10.1007/s40997-017-0080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-017-0080-6

Keywords

Navigation