Skip to main content
Log in

Combination of Born–Infeld and Conformally Invariant Maxwell Lagrangians

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Considering the advantages of two independent nonlinear electrodynamic models, we are going to combine them to obtain a unified theory. Taking into account the functional form of both the Born–Infeld and conformally invariant Maxwell Lagrangians, we use the composition method of two arbitrary functions F(x) and G(x) (\(FoG(x)=F(G(x))\) and \(GoF(x)=G(F(x))\)) to obtain a new nonlinear Lagrangian. We obtain an electric field related to this new Lagrangian by solving a nonlinear differential equation. The numerical results are in excellent agreement with the analytical solutions in special limits and we expect that our numerical code precisely predict the behavior of the electric field for more general cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anninos D, Pastras G (2009) Thermodynamics of the Maxwell-Gauss-Bonnet anti-de Sitter black hole with higher derivative gauge corrections. JHEP 07:030

    Article  Google Scholar 

  • Banerjee R, Roychowdhury D (2012a) Critical phenomena in Born-Infeld AdS black holes. Phys Rev D 85:044040

    Article  Google Scholar 

  • Banerjee R, Roychowdhury D (2012b) Critical behavior of Born-Infeld AdS black holes in higher dimensions. Phys Rev D 85:104043

    Article  Google Scholar 

  • Bergshoff E, Sezgin E, Pope C, Townsend P (1987) The Born-Infeld action from conformal invariance of the open superstring. Phys Lett B 188:70

    Article  Google Scholar 

  • Bialynicka-Birula Z, Bialynicka-Birula I (1970) Nonlinear effects in quantum electrodynamics. Photon propagation and photon splitting in an external field. Phys Rev D 2:2341

    Article  MATH  Google Scholar 

  • Born M (1934) On the quantum theory of the electromagnetic field. Proc Roy Soc Lond A 143:410

    Article  MATH  Google Scholar 

  • Born M, Infeld L (1934) Foundations of the new field theory. Proc Roy Soc Lond A 144:425

    Article  MATH  Google Scholar 

  • Cai RG, Nie ZY, Sun YW (2008) Shear viscosity from effective couplings of gravitons. Phys Rev D 78:126007

    Article  Google Scholar 

  • Cai RG, Sun YW (2008) Shear viscosity from AdS Born-Infeld black holes. JHEP 09:115

    Article  MathSciNet  MATH  Google Scholar 

  • Carley H, Kiessling MKH (2006) Nonperturbative calculation of Born-Infeld effects on the Schrödinger spectrum of the hydrogen atom. Phys Rev Lett 96:030402

    Article  Google Scholar 

  • Dehghani MH, Hendi SH (2009) Wormhole solutions in Gauss–Bonnet–Born–Infeld gravity. Gen Relativ Gravit 41:1853

    Article  MathSciNet  MATH  Google Scholar 

  • Delphenich DH (2003) Nonlinear electrodynamics and QED. arXiv:hep-th/0309108

  • Delphenich DH (2006) Nonlinear optical analogies in quantum electrodynamics. arXiv:hep-th/0610088

  • Dirac PAM (1964) Lectures on Quantum Mechanics. Yeshiva University, Belfer Gradulate School of Science, New York

  • Dymnikova I (2008) Spacetime symmetry and mass of a lepton. J Phys A Math Theor 41:304033

    Article  MATH  Google Scholar 

  • Farjami Y, Hesaaraki M (1998) Structure of shock waves in planar motion of plasma. Nonlinearity 11:797

    Article  MathSciNet  MATH  Google Scholar 

  • Fernando S (2006) Thermodynamics of Born-Infeld–anti-de Sitter black holes in the grand canonical ensemble. Phys Rev D 74:104032

    Article  MathSciNet  Google Scholar 

  • Ferraro R (2010) Testing nonlinear electrodynamics in waveguides: the effect of magnetostatic fields on the transmitted power. J Phys A Math Theor 43:195202

    Article  MathSciNet  MATH  Google Scholar 

  • Fradkin ES, Tseytlin AA (1985) Non-linear electrodynamics from quantized strings. Phys Lett B 163:123

    Article  MathSciNet  MATH  Google Scholar 

  • Gangopadhyay S, Roychowdhury D (2012) Analytic study of properties of holographic superconductors in Born-Infeld electrodynamics. JHEP 05:002

    Article  Google Scholar 

  • Gangopadhyay S, Roychowdhury D (2012) Analytic study of Gauss-Bonnet holographic superconductors in Born-Infeld electrodynamics. JHEP 05:156

    Article  Google Scholar 

  • Ge XH, Matsuo Y, Shu FW, Sin SJ, Tsukioka T (2008) Viscosity bound, causality violation and instability with stringy correction and charge. JHEP 10:009

    Article  MathSciNet  MATH  Google Scholar 

  • Gorshkov KA, Lomov AS, Rabinovich MI (1992) Chaotic scattering of two-dimensional solitons. Nonlinearity 5:1343

    Article  MathSciNet  MATH  Google Scholar 

  • Gross DJ, Sloan JH (1987) The quartic effective action for the heterotic string. Nucl Phys B 291:41

    Article  MathSciNet  Google Scholar 

  • Gunasekaran S, Mann RB, Kubiznak D (2012) Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization. JHEP 11:110

    Article  Google Scholar 

  • Hadizadeh MR, Khaledi-Nasab A (2016) Heavy tetraquarks in the diquark–antidiquark picture. Phys Lett B 753:8

    Article  Google Scholar 

  • Hassaine M, Martinez C (2007) Higher-dimensional black holes with a conformally invariant Maxwell source. Phys Rev D 75:027502

    Article  MathSciNet  Google Scholar 

  • Hassaine M, Martinez C (2008) Higher-dimensional charged black hole solutions with a nonlinear electrodynamics source. Class Quantum Gravit 25:195023

    Article  MathSciNet  MATH  Google Scholar 

  • Heisenberg W, Euler H (1936) Folgerungen aus der Diracschen Theorie des Positrons. Z Phys 98:714

    Article  MATH  Google Scholar 

  • Hendi SH, Eslam Panah B (2010) Thermodynamics of rotating black branes in Gauss–Bonnet–nonlinear Maxwell gravity. Phys Lett B 684:77

    Article  MathSciNet  Google Scholar 

  • Hendi SH (2008) Rotating black branes in Brans–Dicke–Born–Infeld theory. J Math Phys 49:082501

    Article  MathSciNet  MATH  Google Scholar 

  • Hendi SH (2009) Magnetic branes supported by a nonlinear electromagnetic field. Class Quantum Gravit 26:225014

    Article  MathSciNet  MATH  Google Scholar 

  • Hendi SH (2009) Topological black holes in Gauss-Bonnet gravity with conformally invariant Maxwell source. Phys Lett B 677:123

    Article  MathSciNet  Google Scholar 

  • Hendi SH (2010) The relation between F (R) gravity and Einstein-conformally invariant Maxwell source. Phys Lett B 690:220

    Article  Google Scholar 

  • Hendi SH (2010) Rotating black string with nonlinear source. Phys Rev D 82:064040

    Article  Google Scholar 

  • Hendi SH (2010a) Slowly rotating black holes in Einstein-generalized maxwell gravity. Prog Theor Phys 124:493

    Article  MATH  Google Scholar 

  • Hendi SH (2010b) Rotating black branes in the presence of nonlinear electromagnetic field. Eur Phys J C 69:281

    Article  Google Scholar 

  • Hendi SH, Rastegar Sedehi HR (2009) Ricci flat rotating black branes with a conformally invariant Maxwell source. Gen. Relativ. Gravit. 41:1355

    Article  MathSciNet  MATH  Google Scholar 

  • Jing J, Pan Q, Chen S (2011) Holographic superconductors with Power-Maxwell field. JHEP 11:045

    Google Scholar 

  • Kats Y, Motl L, Padi M (2007) Higher-order corrections to mass-charge relation of extremal black holes. JHEP 12:068

    Article  MathSciNet  MATH  Google Scholar 

  • Korolevski W, Kleinert H (2006) Consequences of Dirac’s theory of the positron. arXiv:physics/0605038

  • Maeda H, Hassaine M, Martinez C (2009) Lovelock black holes with a nonlinear Maxwell field. Phys Rev D 79:044012

    Article  Google Scholar 

  • Matsaev R, Rahmanov M, Tseytlin A (1987) The born-infeld action as the effective action in the open superstring theory. Phys Lett B 193:207

    Article  MathSciNet  Google Scholar 

  • Miskovic O, Olea R (2008) Thermodynamics of Einstein-Born-Infeld black holes with negative cosmological constant. Phys Rev D 77:124048

    Article  Google Scholar 

  • Moeser JT (2005) Diffraction managed solitons: asymptotic validity and excitation thresholds. Nonlinearity 18:2275

    Article  MathSciNet  MATH  Google Scholar 

  • Myung YS, Kim YW, Park YJ (2008) Thermodynamics of Einstein-Born-Infeld black holes in three dimensions. Phys Rev D 78:044020

    Article  MathSciNet  Google Scholar 

  • Myung YS, Kim YW, Park YJ (2008) Thermodynamics and phase transitions in the Born-Infeld-anti-de Sitter black holes. Phys Rev D 78:084002

    Article  MathSciNet  Google Scholar 

  • Pomeau Y (1992) Asymptotic time behaviour of nonlinear classical field equations. Nonlinearity 5:707

    Article  MathSciNet  MATH  Google Scholar 

  • Roychowdhury D (2012) Effect of external magnetic field on holographic superconductors in presence of nonlinear corrections. Phys Rev D 86:106009

    Article  Google Scholar 

  • Roychowdhury D (2013) AdS/CFT superconductors with Power Maxwell electrodynamics: reminiscent of the Meissner effect. Phys Lett B 718:1089

    Article  MATH  Google Scholar 

  • Schwinger J (1951) On gauge invariance and vacuum polarization. Phys Rev 82:664

    Article  MathSciNet  MATH  Google Scholar 

  • Seiberg N, Witten E (1999) String theory and noncommutative geometry. JHEP 09:032

    Google Scholar 

  • Stehle P, DeBaryshe PG (1966) Quantum electrodynamics and the correspondence principle. Phys Rev 152:1135

    Article  MATH  Google Scholar 

  • Tseytlin A (1986) Vector field effective action in the open superstring theory. Nucl Phys B 276:391

    Article  MathSciNet  Google Scholar 

  • Türeci HE, Stone AD, Ge L, Rotter S, Tandy RJ (2009) Ab initio self-consistent laser theory and random lasers. Nonlinearity 22:C1

    Article  MathSciNet  MATH  Google Scholar 

  • Vaseghi B, Rezaei G, Hendi SH, Tabatabaei M (2013) Comparison between the nonlinear Born-Infeld and Coulomb theories in quantum dots. Quantum Matter 2:194

    Article  Google Scholar 

  • Yajima H, Tamaki T (2001) Black hole solutions in Euler-Heisenberg theory. Phys Rev D 63:064007

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Hendi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendi, S.H., Hadizadeh, M.R. & Katebi, R. Combination of Born–Infeld and Conformally Invariant Maxwell Lagrangians. Iran J Sci Technol Trans Sci 42, 983–992 (2018). https://doi.org/10.1007/s40995-016-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-016-0060-5

Keywords

Navigation