Skip to main content
Log in

Derivation of the Equations of Electrodynamics and Gravity from the Principle of Least Action

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In classical works, field equations are given without deriving right-hand sides. In this paper, the right-hand sides of the Maxwell and Einstein equations are derived within the framework of Vlasov–Maxwell–Einstein equations from a classical, but more general least action principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. A. Fock, The Theory of Space, Time, and Gravitation (Gostekhizdat, Moscow, 1956; Pergamon, Oxford, 1964).

  2. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, Oxford, 1980).

    MATH  Google Scholar 

  3. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).

    Google Scholar 

  4. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry: Methods and Applications (Springer-Verlag, New York, 1984, 1985, 1990), Parts I–III.

  5. V. V. Vedenyapin and M. A. Negmatov, “Derivation and classification of Vlasov-type and magnetohydrodynamics equations: Lagrange identity and Godunov’s form,” Theor. Math. Phys. 170 (3), 394–405 (2012).

    Article  MathSciNet  Google Scholar 

  6. V. V. Vedenyapin, M. A. Negmatov, and N. N. Fimin, “Vlasov-type and Liouville-type equations, their microscopic, energetic, and hydrodynamical consequences,” Izv. Math. 81 (3), 505–541 (2017).

    Article  MathSciNet  Google Scholar 

  7. V. V. Vedenyapin and M. A. Negmatov, “On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics: The Lagrange identity, the Godunov form, and critical mass” J. Math. Sci. 202, 769–782 (2014).

    Article  MathSciNet  Google Scholar 

  8. V. Vedenyapin, A. Sinitsyn, and E. Dulov, Kinetic Boltzmann, Vlasov and Related Equations (Elsevier Insights, Amsterdam, 2011).

    MATH  Google Scholar 

  9. V. V. Vedenyapin, Preprint No. 188, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2018).

  10. V. V. Vedenyapin, N. N. Fimin, and V. M. Chechetkin, “The system of Vlasov–Maxwell–Einstein-type equations and its nonrelativistic and weak relativistic limits,” Int. J. Mod. Phys. D 29 (1) 2050006 (2020). https://doi.org/10.1142/S0218271820500066

  11. V. Vedenyapin, N. Fimin, and V. Chechetkin, “The properties of Vlasov–Maxwell–Einstein equations and its applications to cosmological models,” Eur. Phys. J. Plus, Article No. 400 (2020).

  12. C. Cercignani and G. M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications (Birkhäuser, Boston, 2002).

    Book  Google Scholar 

  13. Y. Choquet-Bruhat and T. Damour, Introduction to General Relativity, Black Holes, and Cosmology (Oxford Univ. Press, New York, 2015).

    MATH  Google Scholar 

  14. G. Rein and A. D. Rendall, “Global existence of solutions of the spherically symmetric Vlasov–Einstein system with small initial data,” Commun. Math. Phys. 150, 561–583 (1992).

    Article  MathSciNet  Google Scholar 

  15. H. E. Kandrup and P. J. Morrison, “Hamiltonian structure of the Vlasov–Einstein system and the problem of stability for spherical relativistic star clusters,” Ann. Phys. 225, 114–166 (1993).

    Article  MathSciNet  Google Scholar 

  16. E. Madelung, “Quantentheorie in hydrodynamischer form,” Z. Phys. 40, 322–326 (1926).

    Article  Google Scholar 

  17. I. S. Arzhanykh, Momentum Fields (Nauka, Tashkent, 1965; Nat. Lending Lib., Boston Spa, Yorkshire, 1971).

  18. K. I. Dolmatov, Candidate’s Dissertation in Mathematics and Physics (Tashkent, 1950).

  19. V. V. Kozlov, “The hydrodynamics of Hamiltonian systems,” Moscow Univ. Mech. Bull. 38 (6), 9–23 (1983).

    MATH  Google Scholar 

  20. V. V. Kozlov, General Theory of Vortices (Udmurt. Univ., Izhevsk, 1998) [in Russian].

    Google Scholar 

  21. V. V. Kozlov, Symmetries, Topology, and Resonances in Hamiltonian Mechanics (Udmurt. Univ., Izhevsk, 1995; Springer-Verlag, Berlin, 1996).

  22. V. V. Vedenyapin, S. Z. Adzhiev, and V. V. Kazantseva, “Entropy in the sense of Boltzmann and Poincaré, Boltzmann extremals, and the Hamilton–Jacobi method in non-Hamiltonian context,” Sovrem. Mat. Fundam. Napravlen. 64 (1), 37–59 (2018).

    Google Scholar 

  23. S. Z. Adzhiev and N. N. Fimin, “The Hamilton–Jacobi method for non-Hamiltonian systems,” Nelin. Din. 11 (2), 279–286 (2015).

    MATH  Google Scholar 

  24. V. V. Vedenyapin and N. N. Fimin, “The Hamilton–Jacobi method in the non-Hamiltonian situation and the hydrodynamic substitution” Dokl. Math. 91 (2), 154–157 (2015).

    Article  MathSciNet  Google Scholar 

  25. V. V. Vedenyapin and M. A. Negmatov, “On the topology of steady-state solutions of hydrodynamic and vortex consequences of the Vlasov equation and the Hamilton–Jacobi method,” Dokl. Math. 87 (2), 240–244 (2013).

    Article  MathSciNet  Google Scholar 

  26. V. V. Vedenyapin and N. N. Fimin, “The Liouville equation, the hydrodynamic substitution, and the Hamilton–Jacobi equation,” Dokl. Math. 86 (2), 697–699 (2012).

    Article  MathSciNet  Google Scholar 

  27. V. V. Vedenyapin, “Boundary value problems for the steady-state Vlasov equation,” Sov. Math. Dokl. 34 (2), 335–338 (1987).

    MATH  Google Scholar 

  28. V. V. Vedenyapin, “On the classification of steady-state solutions of Vlasov’s equation on the torus, and a boundary value problem,” Russ. Acad. Sci. Dokl. Math. 45 (2), 459–462 (1992).

    MATH  Google Scholar 

  29. Yu. Yu. Arkhipov and V. V. Vedenyapin, “On the classification and stability of steady-state solutions of Vlasov’s equation on a torus and in a boundary value problem,” Proc. Steklov Inst. Math. 203, 11–17 (1995).

    Google Scholar 

  30. V. V. Vedenyapin, “Time averages and Boltzmann extremals,” Dokl. Math. 78 (2), 686–688 (2008).

    Article  MathSciNet  Google Scholar 

  31. S. Z. Adzhiev and V. V. Vedenyapin, “Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model,” Comput. Math. Math. Phys. 51 (11), 1942–1952 (2011).

    Article  MathSciNet  Google Scholar 

  32. V. V. Vedenyapin, M. Yu. Voronina, and A. A. Russkov, “Derivation of the equations of electrodynamics and gravitation from the principle of least action,” Dokl. Phys. 65 (12), 413–417 (2020).

    Article  Google Scholar 

  33. E. A. Milne, Relativity, Gravitation, and World-Structure (Oxford Univ. Press, Oxford, 1935).

    MATH  Google Scholar 

  34. W. H. McCrea and E. A. Milne, “Newtonian universes and the curvature of space,” Q. J. Math. 5, 73–80 (1934).

    Article  Google Scholar 

  35. V. G. Gurzadyan, “The cosmological constant in the McCrea–Milne cosmological scheme,” Observatory 105, 42 (1985).

    Google Scholar 

  36. V. G. Gurzadyan, “On the common nature of dark matter and dark energy: Galaxy groups,” Eur. Phys. J. Plus 134, 14 (2019). https://doi.org/10.1140/epjp/i2019-12418-4

    Article  Google Scholar 

  37. V. G. Gurzadyan and A. Stepanyan, “The cosmological constant derived via galaxy groups and clusters,” Eur. Phys. J. C 79, 169 (2019).

    Article  Google Scholar 

  38. V. V. Vedenyapin, N. N. Fimin, and V. M. Chechetkin, “The generalized Friedman model as a self–similar solution of Vlasov–Poisson equations system,” Eur. Phys. J. Plus 136, 670 (2021).

    Article  Google Scholar 

  39. A. D. Chernin, “Dark energy and universal antigravitation,” Phys.-Usp. 51 (3), 253–282 (2008).

    Article  Google Scholar 

  40. V. N. Lukash and V. A. Rubakov, “Dark energy: Myths and reality,” Phys.-Usp. 51 (3), 283–289 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Vedenyapin, V. I. Parenkina or S. R. Svirshchevskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedenyapin, V.V., Parenkina, V.I. & Svirshchevskii, S.R. Derivation of the Equations of Electrodynamics and Gravity from the Principle of Least Action. Comput. Math. and Math. Phys. 62, 983–995 (2022). https://doi.org/10.1134/S096554252206015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554252206015X

Keywords:

Navigation