Skip to main content

Advertisement

Log in

The Effect of Si Content on the Microstructure and Mechanical Properties of Al–1.2Mg–xSi–1.2Cu–0.6Mn Cast Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this paper, the effect of Si content on the microstructure and mechanical properties of the Al–1.2Mg–xSi–1.2Cu–0.6Mn cast alloy was investigated. The study aimed to explore the optimal addition of Si element to improve the comprehensive properties of alloys. The microstructure, phase composition and fracture morphology of the alloy were determined through OM, SEM, EBSD and XRD analysis. The Si content in the alloy ranged from 0.48 to 2.4 wt.%. With the increase of Si content, the number of strengthening phases increases, which improves the comprehensive properties of the alloy. When the Si content is 0.8 wt.%, the eutectic Mg2Si transforms from rod-shaped to larger block shaped, and the formation of coarse Mg2Si phase limits the elongation of the alloy. When the Si content is 2.4 wt.%, fine Al2Cu phases are present in this alloy and coexist with Al(Fe,Mn)Si phases, while an increase in the Si content appears as partially accompanied by an incipient crystalline Si phase around the Al(Fe,Mn)Si phase. The alloy exhibits a maximum tensile strength, yield strength and elongation of 198.2 MPa, 101.2 MPa and 4.96%, respectively, with a hardness of 80.94 Hv. It consists of five alloy phases, mainly α-Al, Mg2Si, Al(Fe, Mn)Si eutectic phase, Q-AlCuMgSi eutectic phase and the beginning crystalline silicon phase formed due to the increased Si content. The Si content can improve alloy strength, but there is some damage to the toughness of the alloy. Higher silicon alloy content results in the formation of fine Al2Cu eutectic. This result makes it possible to achieve a higher level of strength with a reduced loss of ductility in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. G. Loprencipe, L. Moretti, G. Cantisani et al., Prioritization methodology for roadside and guardrail improvement: quantitative calculation of safety level and optimization of resources allocation. J. Traffic Transp. Eng. 5(5), 348–360 (2018). https://doi.org/10.1016/j.jtte.2018.03.004

    Article  Google Scholar 

  2. M. Child, O. Koskinen, L. Linnanen et al., Sustainability guardrails for energy scenarios of the global energy transition. Renew. Sustain. Energy Rev. 91, 321–334 (2018). https://doi.org/10.1016/j.rser.2018.03.079

    Article  Google Scholar 

  3. W.S. Miller, L. Zhuang, J. Bottema et al., Recent development in aluminum alloys for the automotive industry. Mater. Sci. Eng. A 280(1), 37–49 (2000). https://doi.org/10.1016/S0921-5093(99)00653-X

    Article  Google Scholar 

  4. J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61(3), 818–843 (2013). https://doi.org/10.1016/j.actamat.2012.10.044

    Article  CAS  Google Scholar 

  5. X. Zhang, H. Wang, F. Ye et al., Cooperative effect of mg and Si contents on the microstructural evolution, mechanical performance, and deformation behavior of cast Al–li–Mg–Si alloys. Mater. Sci. Eng. A 841, 142976 (2022). https://doi.org/10.1016/j.msea.2022.142976

    Article  CAS  Google Scholar 

  6. X. Zhu, H. Yang, X. Dong et al., The effects of varying Mg and Si levels on the microstructural inhomogeneity and eutectic Mg2Si morphology in die-cast Al–Mg–Si alloys. J. Mater. Sci. 54(7), 5773–5787 (2019). https://doi.org/10.1007/s10853-018-03198-6

    Article  CAS  Google Scholar 

  7. S. Jiang, R. Wang, Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al–Mg–Si–Sc alloys. J. Mater. Sci. Technol. 35(7), 1354–1363 (2019). https://doi.org/10.1016/j.jmst.2019.03.011

    Article  CAS  Google Scholar 

  8. L. Lu, M.O. Lai, M.L. Hoe, Formaton of nanocrystalline Mg2Si and Mg2Si dispersion strengthened Mg–Al alloy by mechanical alloying. Nanostruct. Mater. 10, 551–563 (1998). https://doi.org/10.1016/S0965-9773(98)00102-0

    Article  CAS  Google Scholar 

  9. G. Meyruey, V. Massardier, W. Lefebvre et al., Over-ageing of an Al–Mg–Si alloy with silicon excess. Mater. Sci. Eng. A 730, 92–105 (2018). https://doi.org/10.1016/j.msea.2018.05.094

    Article  CAS  Google Scholar 

  10. X. Xu, Z. Yang, Y. Ye et al., Effects of various Mg/Si ratios on microstructure and performance property of Al–Mg–Si alloy cables. Mater Charact 119, 114–119 (2016). https://doi.org/10.1016/j.matchar.2016.07.011

    Article  CAS  Google Scholar 

  11. L. Lu, K. Nogita, A.K. Dahle, Combining Sr and Na additions in hypoeutectic Al–Si foundry alloys. Mater. Sci. Eng. A 399(1–2), 244–253 (2005). https://doi.org/10.1016/j.msea.2005.03.091

    Article  CAS  Google Scholar 

  12. O. Elsebaie, A.M. Samuel, F.H. Samuel, Effects of Sr-modification, iron-based intermetallics and aging treatment on the impact toughness of 356 Al–Si–Mg alloy. J. Mater. Sci. 46(9), 3027–3045 (2011). https://doi.org/10.1007/s10853-010-5181-1

    Article  CAS  Google Scholar 

  13. B. Trink, I. Weißensteiner, P.J. Uggowitzer et al., High Fe content in Al–Mg–Si wrought alloys facilitates excellent mechanical properties. Scripta Mater. 215, 114701 (2022). https://doi.org/10.1016/j.scriptamat.2022.114701

    Article  CAS  Google Scholar 

  14. W.J. Poole, X. Wang, J.D. Embury et al., The effect of manganese on the microstructure and tensile response of an Al–Mg–Si alloy. Mater. Sci. Eng. A 755, 307–317 (2019). https://doi.org/10.1016/j.msea.2019.03.015

    Article  CAS  Google Scholar 

  15. B.L. Jo, D.S. Park, S.W. Nam, Effect of mn dispersoid on the fatigue crack propagation of Al–Zn–Mg alloys. Metall. Mater. Trans. A 27(2), 490–493 (1996). https://doi.org/10.1007/BF02648431

    Article  Google Scholar 

  16. S.G. Shabestari, H. Moemeni, Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg alloys. J. Mater. Process. Technol. 153–154, 193–198 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.302

    Article  CAS  Google Scholar 

  17. D.J. Chakrabarti, D.E. Laughlin, Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog. Mater. Sci. 49(3–4), 389–410 (2004). https://doi.org/10.1016/S0079-6425(03)00031-8

    Article  CAS  Google Scholar 

  18. S. Ji, F. Yan, Z. Fan, Development of a high strength Al–Mg2Si–Mg–Zn based alloy for high pressure die casting. Mater. Sci. Eng. A 626, 165–174 (2015). https://doi.org/10.1016/j.msea.2014.12.019

    Article  CAS  Google Scholar 

  19. O. Trudonoshyn, O. Prach, A. Slyudova et al., Structure formation and multistep nucleation in casting Al–Mg–Si alloys. Int. J. Cast Met. Res. 33(4–5), 184–193 (2020). https://doi.org/10.1080/13640461.2020.1822632

    Article  CAS  Google Scholar 

  20. Y.L. Liu, S.B. Kang, The solidification process of Al–Mg–Si alloys. J. Mater. Sci. 32, 1443–1447 (1997). https://doi.org/10.1023/A:1018545732009

    Article  CAS  Google Scholar 

  21. Y. Han, K. Ma, L. Li et al., Study on microstructure and mechanical properties of Al–Mg–Si–Cu alloy with high manganese content. Mater. Des. 39, 418–424 (2012). https://doi.org/10.1016/j.matdes.2012.01.034

    Article  CAS  Google Scholar 

  22. G. Li, M. Guo, Y. Wang et al., Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio. Int. J. Miner. Metall. Mater. 26(6), 740–751 (2019). https://doi.org/10.1007/s12613-019-1778-9

    Article  CAS  Google Scholar 

  23. M.N. Desmukh, R.K. Pandey, A.K. Mukhopadhyay, Effect of aging treatments on the kinetics of fatigue crack growth in 7010 aluminum alloy. Mater. Sci. Eng. A 435–436, 318–326 (2006). https://doi.org/10.1016/j.msea.2006.07.063

    Article  CAS  Google Scholar 

  24. A. Moffat, S. Barnes, B. Mellor et al., The effect of silicon content on long crack fatigue behaviour of aluminum–silicon piston alloys at elevated temperature. Int. J. Fatigue 27(10–12), 1564–1570 (2005). https://doi.org/10.1016/j.ijfatigue.2005.06.023

    Article  CAS  Google Scholar 

  25. A. Malekan, M. Emamy, J. Rassizadehghani et al., The effect of solution temperature on the microstructure and tensile properties of al − 15%Mg2Si composite. Mater. Des. 32(5), 2701–2709 (2011). https://doi.org/10.1016/j.matdes.2011.01.020

    Article  CAS  Google Scholar 

  26. Q. Cai, C.L. Mendis, I.T.H. Chang et al., Microstructure evolution and mechanical properties of new die-cast Al–Si–Mg–Mn alloys. Mater. Des. 187, 108394 (2020). https://doi.org/10.1016/j.matdes.2019.108394

    Article  CAS  Google Scholar 

  27. G. Rajaram, S. Kumaran, T.S. Rao, Effect of graphite and transition elements (Cu, Ni) on high temperature tensile behaviour of Al–Si alloys. Mater. Chem. Phys. 128(1–2), 62–69 (2011). https://doi.org/10.1016/j.matchemphys.2011.02.069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Yunnan Major Scientific and Technological Projects (grant NO. 202202AG050011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yang, Z., Zhang, F. et al. The Effect of Si Content on the Microstructure and Mechanical Properties of Al–1.2Mg–xSi–1.2Cu–0.6Mn Cast Alloy. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01339-z

Keywords

Navigation