Skip to main content
Log in

Investigation on Mechanical Behavior of LM26 Aluminum Alloy—ZrB2 and Copper-Coated Short Steel Fiber-Reinforced Composites Using Stir Casting Process

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Currently there is a growing interest in investigating aluminum alloy-based hybrid composites due to their growing importance in the automotive and aerospace sectors. To enhance the value of this field, an attempt was made to synthesize zirconium diboride (ZrB2) and copper-coated short steel fiber-reinforced LM26 aluminum alloy hybrid composites using stir casting with varying weight percentages of ZrB2 (2.5, 5, and 10wt%) and copper-coated short steel fiber (5wt% kept constant) for applications requiring a lightweight and high strength, particularly for high-temperature applications. Matrix, fiber-reinforced composite (FRC), and hybrid composite specimens were synthesized using stir casting technique with the process parameters of 750°C for pouring temperature, 10 minutes for stirring time, 650 rpm for stirring speed, and 400°C for preheating temperature of reinforcements. With the use of a wire-cut electrical discharge machine, the specimens were prepared for various tests in accordance with ASTM standards. A complete microstructural (optical microscope and scanning electron microscope) investigation and mechanical property (hardness, tensile properties, and impact strength) evaluation were carried out according to the ASTM standard to comprehend the influence of the reinforcements, and the findings were presented. The optical microscopic images clearly showed that the ZrB2 and copper-coated short steel fiber reinforcements were uniformly distributed throughout the matrix (LM26 aluminum alloy). The Brinell hardness values increased as the reinforcements were added, reaching a maximum hardness of 152 BHN for the hybrid composite with 15wt% cumulative reinforcement, which is 35.71% higher than the matrix. Compared to matrix alloy, the composite with 15% cumulative reinforcement exhibited a maximum 38.41% improvement in ultimate tensile strength. As further reinforcement is added after 10wt%, yield strength declines to 6.36%, and for the composite with 15wt% of reinforcement, elongation gradually drops to 33.7% as compared to the matrix. The energy absorption of reinforced composites with 5wt% and 15wt% shows a similar percentage decrease of 42.86%, when compared to the matrix. However, a notable decline in ductility was identified for the composites because of the addition of strong reinforcements, while the LM26 alloy retained its ductility. Further, hybrid composites showed poor resistance to impact load due to the incorporation of hybrid reinforcements, and respective fractography showed brittle fracture. The results make it quite evident that the hybrid composites of copper-coated short steel fiber and ZrB2-reinforced LM26 aluminum alloy have outstanding mechanical properties, making them a good choice for use in the automobile industry as a newer material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. J.J.M. Hillary, R. Ramamoorthi, J.D.J. Joseph, C.S.J. Samuel, A study on microstructural effect and mechanical behaviour of Al6061–5% SiC–TiB2 particulates reinforced hybrid metal matrix composites. J. Compos. Mater. 54, 2327–2337 (2020). https://doi.org/10.1177/0021998319894666

    Article  CAS  ADS  Google Scholar 

  2. S. Liu, T. Yinwei Wang, G.A. Muthuramalingam, Effect of B4C and MOS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications. Compos. B Eng. 176, 107329 (2019). https://doi.org/10.1016/j.compositesb.2019.107329

    Article  CAS  Google Scholar 

  3. Friction Stir Welding and Processing: Fundamentals to Advancements, Wiley, 2024, ISBN: 978-1-394-16943-6

  4. P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C. Mustansar, P. Gupta, Advance research progresses in aluminium matrix composites: manufacturing & applications. J. Mater. Res. Technol. 8, 4924–4939 (2019). https://doi.org/10.1016/j.jmrt.2019.06.028

    Article  CAS  Google Scholar 

  5. J.V. Christy, R. Arunachalam, A.H.I. Mourad, P.K. Krishnan, S. Piya, M. Al-Maharbi, Processing, properties, and microstructure of recycled aluminum alloy composites produced through an optimized stir and squeeze casting processes. J. Manuf. Process. 59, 287–301 (2020). https://doi.org/10.1016/j.jmapro.2020.09.067

    Article  Google Scholar 

  6. J. James, A.R. Annamalai, A. Muthuchamy, C.P. Jen, (2021), Effect of wettability and uniform distribution of reinforcement particle on mechanical property (tensile) in aluminum metal matrix composite-a review. Nanomater. 11, 2230 (2021). https://doi.org/10.3390/nano11092230

    Article  CAS  Google Scholar 

  7. M. Malaki, A. FadaeiTehrani, B. Niroumand, M. Gupta, Wettability in metal matrix composites. Met. 11, 1034 (2021). https://doi.org/10.3390/met11071034

    Article  CAS  Google Scholar 

  8. R. Chandel, N. Sharma, S.A. Bansal, A review on recent developments of aluminum-based hybrid composites for automotive applications. Emergent Mater. 4, 1243–1257 (2021). https://doi.org/10.1007/s42247-021-00186-6

    Article  CAS  Google Scholar 

  9. A. Lakshmikanthan, S. Angadi, V. Malik, K.K. Saxena, C. Prakash, S. Dixit, K.A. Mohammed, Mechanical and tribological properties of aluminum-based metal-matrix composites. Mater. 15, 6111 (2022). https://doi.org/10.3390/ma15176111

    Article  CAS  Google Scholar 

  10. S. Dev, A. Aherwar, A. Patnaik, Preliminary evaluations on development of recycled porcelain reinforced LM-26/Al-Si10Cu3Mg1 alloy for piston materials. SILICON 11, 1557–1573 (2019). https://doi.org/10.1007/s12633-018-9979-9

    Article  CAS  Google Scholar 

  11. A. Mussatto, I.U. Ahad, R.T. Mousavian, Y. Delaure, D. Brabazon, Advanced production routes for metal matrix composites. Eng. Rep. 3, e12330 (2021). https://doi.org/10.1002/eng2.12330

    Article  CAS  Google Scholar 

  12. P. Samal, P.R. Vundavilli, A. Meher, M.M. Mahapatra, Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J. Manuf. Process. 59, 131–152 (2020). https://doi.org/10.1016/j.jmapro.2020.09.010

    Article  Google Scholar 

  13. N.R. Rathod, J. Menghani, A consequence of reinforcements in aluminum-based metal matrix composites: a literature review. Metall. Mater. Eng. 25, 195–208 (2019). https://doi.org/10.30544/422

    Article  Google Scholar 

  14. N. Muralidharan, K. Chockalingam, I. Dinaharan, K. Kalaiselvan, Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles. J. Alloys Compd. 735, 2167–2174 (2018). https://doi.org/10.1016/j.jallcom.2017.11.371

    Article  CAS  Google Scholar 

  15. A. Manikandan, M.S. Omkumar, V. Mohanavel, Influence of ZrB2 on the microstructural characteristics of AA6082/ZrB2 composites. Mater. Tehnol. 53, 327–332 (2019). https://doi.org/10.17222/mit.2018.133

    Article  CAS  Google Scholar 

  16. D.K. Rajak, D.D. Pagar, R. Kumar, C.I. Pruncu, Recent progress of reinforcement materials: a comprehensive overview of composite materials. J. Mater. Res. Technol. 8, 6354–6374 (2019). https://doi.org/10.1016/j.jmrt.2019.09.068

    Article  CAS  Google Scholar 

  17. M. Magnuson, L. Tengdelius, G. Greczynski, L. Hultman, H. Högberg, Chemical bonding in epitaxial ZrB2 studied by X-ray spectroscopy. Thin Solid Films 649, 89–96 (2018). https://doi.org/10.1016/j.tsf.2018.01.021

    Article  CAS  ADS  Google Scholar 

  18. S.J.S. Chelladurai, R. Arthanari, K. Krishnamoorthy, K.S. Selvaraj, P. Govindan, Effect of copper coating and reinforcement orientation on mechanical properties of LM6 aluminium alloy composites reinforced with steel mesh by squeeze casting. Trans. Indian Inst. Met. 71, 1041–1048 (2018). https://doi.org/10.1007/s12666-017-1235-2

    Article  CAS  Google Scholar 

  19. K.S. Selvaraj, P. Govindan, Investigation of the mechanical properties of a squeeze-cast LM6 aluminium alloy reinforced with a zinc-coated steel-wire mesh. Mater. Tehnol. 52, 125–131 (2018). https://doi.org/10.17222/mit.2017.019

    Article  CAS  Google Scholar 

  20. A. Jamwal, P. Mittal, R. Agrawal, S. Gupta, D. Kumar, K.K. Sadasivuni, P. Gupta, Towards sustainable copper matrix composites: manufacturing routes with structural, mechanical, electrical and corrosion behaviour. J. Compos. Mater. 54, 2635–2649 (2020). https://doi.org/10.1177/00219983199006

    Article  CAS  ADS  Google Scholar 

  21. N.M.S. Kumar, T.N. Shashank, N.U. Dheeraj et al., Coatings on reinforcements in aluminum metal matrix composites. Inter Metalcast (2022). https://doi.org/10.1007/s40962-022-00831-8

    Article  Google Scholar 

  22. S.J.S. Chelladurai, R. Arthanari, N. Nithyanandam, K. Rajendran, K.K. Radhakrishnan, Investigation of mechanical properties and dry sliding wear behaviour of squeeze cast LM6 aluminium alloy reinforced with copper coated short steel fibers. Trans. Indian Inst. Met. 71, 813–822 (2018). https://doi.org/10.1007/s12666-017-1258-8

    Article  CAS  Google Scholar 

  23. P. Yadav, A. Ranjan, H. Kumar, A. Mishra, J. Yoon, A contemporary review of aluminium MMC developed through stir-casting route. Mater. 14, 6386 (2021). https://doi.org/10.3390/ma14216386

    Article  CAS  Google Scholar 

  24. B.E. Arendarchuck, A.R. Mayer, L.A. Lourençato et al., Assessment of the microstructure and abrasive wear properties of an A380/NbC aluminum composite produced by stir casting. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01154-y

    Article  Google Scholar 

  25. K. Bm, G. Mc, S. Sharma, P. Hiremath, M. Shettar, N. Shetty, Coated and uncoated reinforcements metal matrix composites characteristics and applications–A critical review. Cogent Eng. 7, 1856758 (2020). https://doi.org/10.1080/23311916.2020.1856758

    Article  Google Scholar 

  26. A. Abebe Emiru, D.K. Sinha, A. Kumar, A. Yadav, Fabrication and characterization of hybrid aluminium (Al6061) metal matrix composite reinforced with SiC, B4C and MoS2 via stir casting. Int. J. Met. 17, 801–812 (2023). https://doi.org/10.1007/s40962-022-00800-1

    Article  CAS  Google Scholar 

  27. K. Shivalingaiah, V. Nagarajaiah, C.P. Selvan, S.T. Kariappa, N.G. Chandrashekarappa, A. Lakshmikanthan, E. Linul, Stir casting process analysis and optimization for better properties in Al-MWCNT-GR-based hybrid composites. Metals 12(8), 1297 (2022). https://doi.org/10.3390/met12081297

    Article  CAS  Google Scholar 

  28. S. Rangrej, V. Mehta, V. Ayar, M. Sutaria, Effects of stir casting process parameters on dispersion of reinforcement particles during preparation of metal composites. Mater. Today: Proc. 43, 471–475 (2021). https://doi.org/10.1016/j.matpr.2020.11.1002

    Article  Google Scholar 

  29. R. Palanivel, I. Dinaharan, R.F. Laubscher, J. Davim, Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing. Mater. Des. 106, 195–204 (2016). https://doi.org/10.1016/j.matdes.2016.05.127

    Article  CAS  Google Scholar 

  30. R.P. Barot, R.P. Desai, M.P. Sutaria, Recycling of aluminium matrix composites (AMCs): a review and the way forward. Inter Metalcast 17, 1899–1916 (2023). https://doi.org/10.1007/s40962-022-00905-7

    Article  CAS  Google Scholar 

  31. S.Y. Pawar, J. Haider, G. Pintaude, S.M. Sekar, V. Kolhe, K. Chandratre, S. Sonawane, P. Ritapure, Mechanical and tribological behavior of LM26/SiC/Ni-Gr hybrid composites. J. Compos. Sci. 7(4), 159 (2023). https://doi.org/10.3390/jcs7040159

    Article  CAS  Google Scholar 

  32. C. Prakash, P. Senthil, N. Manikandan, and Palanisamy, D, Investigations and regression modeling on mechanical characterization of cast aluminum alloy based (LM 26+ graphite+ fly ash) hybrid metal matrix composites. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00881-6

    Article  Google Scholar 

  33. K.R. Raju, G. Senthilkumar, Investigation on properties of LM26 hybrid composite material with ceramic reinforcements. Mater. Today: Proc. 45, 8086–8093 (2021). https://doi.org/10.1016/j.matpr.2021.01.286

    Article  CAS  Google Scholar 

  34. R.T.K. Rajan, S. Ramesh, S.B. Boppana, P. Krishnan, K, Sustainable development on production and characterization of metal matrix composites using stir casting. J. Phys. Commun. 7(6), 065002 (2023). https://doi.org/10.1088/2399-6528/acd748

    Article  Google Scholar 

  35. J. Mohamadigangaraj, S. Nourouzi, AVAL, H. J, Microstructure, mechanical and tribological properties of A390/SiC composite produced by compocasting. Trans. Nonferrous Met. Soc. China 29(4), 710–721 (2019). https://doi.org/10.1016/S1003-6326(19)64981-2

    Article  CAS  Google Scholar 

  36. S. Dinesh Kumar, M. Ravichandran, A. Jeevika, B. Stalin, C. Kailasanathan, A. Karthick, Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route. Ceram. Int. 47, 12951–12962 (2021). https://doi.org/10.1016/j.ceramint.2021.01.158

    Article  CAS  Google Scholar 

  37. P. Hariharasakthisudhan, B.S. Rajan, K. Sathickbasha, Inspiration of reinforcements, manufacturing methods, and microstructural changes on wear behavior of metal matrix composites—a recent review. Mater. Res. Express 7(1), 012006 (2020). https://doi.org/10.1088/2053-1591/ab6918

    Article  CAS  ADS  Google Scholar 

  38. I. Dinaharan, K. Kalaiselvan, E.T. Akinlabi, J. Davim, P, Microstructure and wear characterization of rice husk ash reinforced copper matrix composites prepared using friction stir processing. J. Alloy. Compd. 718, 150–160 (2017). https://doi.org/10.1016/j.jallcom.2017.05.117

    Article  CAS  Google Scholar 

  39. R. Soundararajan, A. Sathishkumar, S. Sivasankaran, G. Shanthosh, & Karthik, S, Evaluation of microstructures, mechanical and dry-sliding wear performance of A356-(Fly Ash/SiCp) hybrid composites. Inter Metalcast (2022). https://doi.org/10.1007/s40962-021-00731-3

    Article  Google Scholar 

  40. L. Venkatesh, T.V. Arjunan, K. Ravikumar, Microstructural characteristics and mechanical behaviour of aluminium hybrid composites reinforced with groundnut shell ash and B4C. J BRAZ SOC MECH SCI. 41, 1–13 (2019). https://doi.org/10.1007/s40430-019-1800-1

    Article  CAS  Google Scholar 

  41. S.J.S. Chelladurai, R. Arthanari, Prediction of hardness of stir cast LM13 aluminum alloy-copper coated short steel fiber reinforced composites using response surface methodology. Mater. Werkst. 51, 221–229 (2020). https://doi.org/10.1002/mawe.201900068

    Article  CAS  Google Scholar 

  42. M.S. Asl, M.G. Kakroudi, S. Noori, Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressure. J. Alloys Compd. 619, 481–487 (2015). https://doi.org/10.1016/j.jallcom.2014.09.006

    Article  CAS  Google Scholar 

  43. I. Dinaharan, N. Murugan, S. Parameswaran, Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites. Mater. Sci. Eng. A 528, 5733–5740 (2011). https://doi.org/10.1016/j.msea.2011.04.033

    Article  CAS  Google Scholar 

  44. P. Gnaneswaran, V. Hariharan, S.J.S. Chelladurai, G. Rajeshkumar, S. Gnanasekaran, S. Sivananthan, B. Debtera, Investigation on mechanical and wear behaviors of LM6 aluminium alloy-based hybrid metal matrix composites using stir casting process. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/4116843

    Article  Google Scholar 

  45. S.J.S. Chelladurai, T. Murugesan, T. Rajamani, S. Anand, S.J.P. Asok, S. Kumaravel, Investigation on mechanical properties and tribological behaviour of stir cast LM13 aluminium alloy based particulate hybrid composites. Materwiss Werksttech 50(7), 864–887 (2019). https://doi.org/10.1002/mawe.201800116

    Article  CAS  Google Scholar 

  46. K. Velavan, K. Palanikumar, E. Natarajan, W. Lim, H, Implications on the influence of mica on the mechanical properties of cast hybrid (Al+ 10% B4C+ Mica) metal matrix composite. J. Mater. Res. Technol. 10, 99–109 (2021). https://doi.org/10.1016/j.jmrt.2020.12.004

    Article  CAS  Google Scholar 

  47. S.J.S. Chelladurai, R. Arthanari, R. Selvarajan, S. Athanarsamy, S. Arumugam, G. Veerakumar, Investigation on mechanical properties and wear behaviour of squeeze cast LM13 aluminium alloy reinforced with copper coated steel wires. Z. Phys. Chem. 232(12), 1787–1806 (2018). https://doi.org/10.1515/zpch-2017-1093

    Article  CAS  Google Scholar 

  48. J. Hernandez-Sandoval, M.H. Abdelaziz, E.A. Elsharkawi, A.M. Samuel, F.H. Samuel, Change of tensile properties with aging time and temperature in Al-Si-Cu-Mg354 cast alloys with/without minor addition of Ni and/or Zr. Adv. Mater. Sci. Eng. (2021). https://doi.org/10.1155/2021/5551633

    Article  Google Scholar 

  49. M. Tiryakioğlu, J. Campbell, Quality index for aluminum alloy castings. Inter Metalcast. 8, 39–42 (2014). https://doi.org/10.1007/BF03355589

    Article  Google Scholar 

  50. L. Tonelli, E. Liverani, G. Di Egidio, A. Fortunato, A. Morri, L. Ceschini, On the role of microstructure and defects in the room and high-temperature tensile behavior of the PBF-LB A357 (AlSi7Mg) alloy in as-built and peak-aged conditions. Materials 16(7), 2721 (2023). https://doi.org/10.3390/ma16072721

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. R. Taghiabadi, H. Jalali, Quality index assessment of multi-pass friction stir processed Al–Si–Mg alloys fully produced by recycling of machining chips. Trans. Indian Inst. Met. 74, 273–284 (2021)

    Article  CAS  Google Scholar 

  52. L. Prasad, N. Kumar, A. Yadav, A. Kumar, V. Kumar, J. Winczek, In situ formation of ZrB2 and its influence on wear and mechanical properties of ADC12 alloy mixed matrix composites. Materials 14(9), 2141 (2021). https://doi.org/10.3390/ma14092141

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Vijayan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, S.N., Chelladurai, S.J.S. & Saiyathibrahim, A. Investigation on Mechanical Behavior of LM26 Aluminum Alloy—ZrB2 and Copper-Coated Short Steel Fiber-Reinforced Composites Using Stir Casting Process. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01303-x

Keywords

Navigation