Skip to main content
Log in

High Temperature and Lubricating Wear Behaviour of In-Situ Al-20Mg2Si Composite

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This study investigates the tribological behaviour of Al-20Mg2Si composite having potential applications in automobiles. A pin-on-disc apparatus was employed to assess its performance under diverse operating conditions relevant to automotive components. These conditions encompassed variations in sliding conditions (dry and lubricated), temperatures (ranging from 30°C to 200°C), and loads (20N, 40N, and 60N), with a focus on understanding their influence on wear characteristics, mechanisms, wear maps, and surface topography. The findings emphasize the pronounced impact of test conditions on wear properties. Dry sliding conditions showed a substantial increase in both cumulative wear and friction coefficient, rising by 13.17 and 1.47 times, respectively, from the 30°C test to the 200°C test with a 60N load. Conversely, lubrication yielded significantly lower cumulative wear and friction coefficients, measuring only 0.07 and 0.15 times those observed during room temperature dry sliding conditions. Surface roughness analysis confirmed that higher loads and temperatures resulted in increased roughness, while lubrication effectively reduced surface roughness. FESEM analysis of worn surfaces and debris revealed that under dry sliding at room temperature, the primary wear mechanism was abrasive, with secondary mechanisms being oxidative and adhesive wear. In contrast, at high temperatures during dry sliding, the primary mechanism shifted to adhesive wear, accompanied by secondary mechanisms including delamination, oxidative wear, and plastic deformation. Wear map analysis showed that at room temperature, wear changed from severe to moderate to mild as sliding distance increased. However, with increased temperature and load, wear shifted from mild to moderate to severe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. P. Biswas, D. Mandal, M.K. Mondal, Micromechanical response of Al–Mg2Si composites using approximated representative volume elements (RVEs) model. Mater. Res. Express 6, 1165c6 (2019). https://doi.org/10.1088/2053-1591/ab4e4f

    Article  Google Scholar 

  2. M.R. Moazami, A. Razaghian, A. Moharami et al., Enhancing the elevated temperatures tribological properties of Al–Mg2Si composites by in-situ addition of Ti-based intermetallics and hot working. J. Mater. Res. Technol. 21, 1381–1394 (2022). https://doi.org/10.1016/j.jmrt.2022.09.120

    Article  CAS  Google Scholar 

  3. S. Farahany, H. Ghandvar, N.A. Nordin et al., Microstructure characterization, mechanical, and tribological properties of slow-cooled Sb-treated Al-20Mg2Si-Cu in situ composites. J. Mater. Eng. Perform. 26, 1685–1700 (2017). https://doi.org/10.1007/s11665-017-2624-8

    Article  CAS  Google Scholar 

  4. A. Moharami, A. Razaghian, B. Babaei et al., Role of Mg2Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al-Mg2Si composite. J. Compos. Mater. 54, 4035–4057 (2020). https://doi.org/10.1177/0021998320925528

    Article  CAS  Google Scholar 

  5. A. Moharrami, A. Razaghian, M. Emamy et al., Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al-20 wt% Mg2Si composite. J. Tribol.Tribol. 141, 122202 (2019). https://doi.org/10.1115/1.4044672

    Article  CAS  Google Scholar 

  6. B. Bülbül, M. Okumuş, Microstructure, hardness, thermal and wear behaviours in Al–10Ni/TiO2 composites fabricated by mechanical alloying. Mater. Chem. Phys. 281, 125908 (2022). https://doi.org/10.1016/j.matchemphys.2022.125908

    Article  CAS  Google Scholar 

  7. Y. Jin, H. Fang, S. Wang et al., Improvement of microstructure and mechanical properties of near-eutectic Al–Mg2Si alloys by Eu addition. Adv. Eng. Mater. 23(4), 2001447 (2021). https://doi.org/10.1002/adem.202001447

    Article  CAS  Google Scholar 

  8. M. Sun, L. Lu, X. Bai et al., The time-dependent reliability analysis of brake piston special-shaped seal of the caliper disc brake. J. Sens. 2022, 2820010 (2022). https://doi.org/10.1155/2022/2820010

    Article  Google Scholar 

  9. Y. Li, T. Liu, S. Chen et al., Effect of Ce Inoculation on microstructure and mechanical properties of in situ Al–20%Mg2Si composite. Int. J. Metalcast.Metalcast. 13, 331–336 (2019). https://doi.org/10.1007/s40962-018-0252-1

    Article  CAS  Google Scholar 

  10. R. Bhandari, P. Biswas, M. Mallik et al., Microstructure-based numerical simulation of the micromechanics and fracture in hypereutectic Al–Mg2Si composites. Mater. Chem. Phys. 297, 127427 (2023). https://doi.org/10.1016/j.matchemphys.2023.127427

    Article  CAS  Google Scholar 

  11. A. Vajd, A. Samadi, Optimization of centrifugal casting parameters to produce the functionally graded Al–15wt% Mg2Si composites with higher tensile properties. Int. J. Metalcast.Metalcast. 14, 937–948 (2020). https://doi.org/10.1007/s40962-019-00394-1

    Article  CAS  Google Scholar 

  12. S. Ashkvary, S.G. Shabestari, F. Yavari, Effect of cooling rate on the microstructure and solidification characteristics of Al–20% Mg2Si in situ composites using computer-aided thermal analysis technique. Int. J. Metalcast.Metalcast. 17(1), 322–333 (2023). https://doi.org/10.1007/s40962-022-00771-3

    Article  CAS  Google Scholar 

  13. M. Ebrahimi, A. Zarei-Hanzaki, A.H. Shafieizad et al., High-temperature wear mechanisms of a severely plastic deformed Al/Mg2Si composite. J. Tribol.Tribol. 141, 031604 (2019). https://doi.org/10.1115/1.4041764

    Article  CAS  Google Scholar 

  14. P. Biswas, M. Paliwal, M.K. Mondal, Thermochemical behavior, solidification, thermal stability, and oxidation of Al-Mg2Si composites: an experimental and thermodynamic study. Mater. Today Commun. 35, 105913 (2023). https://doi.org/10.1016/j.mtcomm.2023.105913

    Article  CAS  Google Scholar 

  15. V.S. Ayar, M.P. Sutaria, Comparative Evaluation of ex situ and in situ method of fabricating aluminum/TiB2 composites. Int. J. Metalcast.Metalcast. 15, 1047–1056 (2021). https://doi.org/10.1007/s40962-020-00539-7

    Article  CAS  Google Scholar 

  16. R. Bhandari, M. Mallik, M.K. Mondal, Microstructure evolution and mechanical properties of in situ hypereutectic Al-Mg2Si composites. AIP Conf. Proc. 2162(1), 020145 (2019). https://doi.org/10.1063/1.5130355

    Article  CAS  Google Scholar 

  17. M.M. Khan, M. Nisar, Effect of in situ TiC reinforcement and applied load on the high-stress abrasive wear behaviour of zinc–aluminum alloy. Wear 488–489, 204082 (2022). https://doi.org/10.1016/j.wear.2021.204082

    Article  CAS  Google Scholar 

  18. P. Biswas, D. Mandal, M.K. Mondal, Failure analysis of in-situ Al–Mg2Si composites using actual microstructure-based model. Mater. Sci. Eng. A 797, 140155 (2020). https://doi.org/10.1016/j.msea.2020.140155

    Article  CAS  Google Scholar 

  19. X.F. Wu, Z.C. Wang, T. Cheng et al., Effects of Cu addition on microstructure and mechanical properties of Er-modified Al-10Mg2Si cast alloys. J. Cent. South Univ. 29, 795–806 (2022). https://doi.org/10.1007/s11771-022-4963-3

    Article  CAS  Google Scholar 

  20. Y. Jin, H. Fang, S. Wang et al., Effects of Eu modification and heat treatment on microstructure and mechanical properties of hypereutectic Al–Mg2Si composites. Mater. Sci. Eng. A 831, 142227 (2022). https://doi.org/10.1016/j.msea.2021.142227

    Article  CAS  Google Scholar 

  21. J. Qin, H. Nagaumi, C. Yu et al., Coarsening behavior of Mg2Si precipitates during post homogenization cooling process in Al-Mg-Si alloy. J. Alloys Compd. 902, 162851 (2022). https://doi.org/10.1016/j.jallcom.2021.162851

    Article  CAS  Google Scholar 

  22. A.M. Nithin, M.J. Davidson, C.S.P. Rao, Effect of various Mg/Si ratios on microstructure and structural properties of thixoextruded Al-Si-Mg alloys. SILICON 14, 11675–11686 (2022). https://doi.org/10.1007/s12633-022-01689-5

    Article  CAS  Google Scholar 

  23. M. Sharifzadeh, M.H. Shaeri, R. Taghiabadi et al., Investigating the combination effect of warm extrusion and multi-directional forging on microstructure and mechanical properties of Al–Mg2Si composites. Arch. Civ. Mech. 20, 1–11 (2020). https://doi.org/10.1007/s43452-020-00020-6

    Article  Google Scholar 

  24. R. Zamani, H. Mirzadeh, M. Emamy, Evaluating the effect of hot-rolling reduction on the mechanical properties of in situ formed aluminum–magnesium–silicon (Al-Mg2Si) composites. Adv. Eng. Mater. 21, 1900609 (2019). https://doi.org/10.1002/adem.201900609

    Article  CAS  Google Scholar 

  25. B. Wei, S. Li, T. Jiang et al., Optimization of Si content to inhibit inhomogeneous deformation in Al-Mg-Si alloy fabricated via twin-roll casting. Metals 12, 941 (2022). https://doi.org/10.3390/met12060941

    Article  CAS  Google Scholar 

  26. M. Chegini, M.H. Shaeri, R. Taghiabadi et al., Effect of equal channel angular pressing on microstructure and mechanical properties of thermally-homogenized Al–Mg2Si composites. Mater. Chem. Phys. 259, 124200 (2021). https://doi.org/10.1016/j.matchemphys.2020.124200

    Article  CAS  Google Scholar 

  27. P. Biswas, M.K. Mondal, D. Mandal, Effect of Mg2Si concentration on the dry sliding wear behavior of Al–Mg2Si composite. J. Tribol.Tribol. (2019). https://doi.org/10.1115/1.4043779

    Article  Google Scholar 

  28. S. Farahany, H. Ghandvar, M. Bozorg et al., Role of Sr on microstructure, mechanical properties, wear and corrosion behaviour of an Al–Mg2Si–Cu in-situ composite. Mater. Chem. Phys. 239, 121954 (2020). https://doi.org/10.1016/j.matchemphys.2019.121954

    Article  CAS  Google Scholar 

  29. J.N. Zhu, T.T. Zhou, M. Zha et al., Microstructure and wear behavior of Al-20Mg2Si alloy with combined Zr and Sb additions. J. Alloys Compd. 767, 1109–1116 (2018). https://doi.org/10.1016/j.jallcom.2018.07.032

    Article  CAS  Google Scholar 

  30. S. Farahany, H. Ghandvar, N.A. Nordin et al., Effect of primary and eutectic Mg2Si crystal modifications on the mechanical properties and sliding wear behavior of an Al-20Mg2Si–2Cu–xBi composite. J. Mater. Sci. Technol. 32, 1083–1097 (2016). https://doi.org/10.1016/j.jmst.2016.01.014

    Article  CAS  Google Scholar 

  31. H. Pourfallah, M. Shahmiri, Effect of SIMA process on microstructure and wear behavior of Al-Mg2Si-3% Ni composite. Metallogr. Microstruct. Anal. 8, 109–117 (2019). https://doi.org/10.1007/s13632-018-0500-z

    Article  Google Scholar 

  32. H. Majdi, A. Razaghian, M. Emamy et al., The effects of Cu addition and solutionizing heat treatment on the microstructure and wear properties of hot-extruded Al–Mg2Si eutectic alloy. Adv. Mater. Process. Technol. 3, 164–173 (2017). https://doi.org/10.1080/2374068X.2016.1147768

    Article  Google Scholar 

  33. X.F. Wu, G.A. Zhang, F.F. Wu, Influence of Bi addition on microstructure and dry sliding wear behaviors of cast Al-Mg2Si metal matrix composite. Trans. Nonferrous Met. Soc. China 23, 1532–1542 (2013). https://doi.org/10.1016/S1003-6326(13)62627-8

    Article  CAS  Google Scholar 

  34. X.F. Wu, G.G. Zhang, F.F. Wu, Microstructure and dry sliding wear behavior of cast Al–Mg2Si in-situ metal matrix composite modified by Nd. Rare Met. 32(3), 284–289 (2013). https://doi.org/10.1007/s12598-013-0030-4

    Article  CAS  Google Scholar 

  35. H.R. Jafari Nodooshan, W. Liu, G. Wu, Mechanical and tribological characterization of Al-Mg2Si composites after yttrium addition and heat treatment. J. Mater. Eng. Perform. 23, 1146–1156 (2014). https://doi.org/10.1007/s11665-014-0900-4

    Article  CAS  Google Scholar 

  36. G. Rajaram, S. Kumaran, T.S. Rao et al., Studies on high temperature wear and its mechanism of Al–Si/graphite composite under dry sliding conditions. Tribol. Int.. Int. 43, 2152–2158 (2010). https://doi.org/10.1016/j.triboint.2010.06.004

    Article  CAS  Google Scholar 

  37. S. Jerome, B. Ravisankar, P.K. Mahato, Synthesis and evaluation of mechanical and high-temperature tribological properties of in-situ Al–TiC composites. Tribol. Int.. Int. 43, 2029–2036 (2010). https://doi.org/10.1016/j.triboint.2010.05.007

    Article  CAS  Google Scholar 

  38. S. Kumar, V.S. Sarma, B.S. Murty, High temperature wear behavior of Al–4Cu–TiB2 in situ composites. Wear 268, 1266–1274 (2010). https://doi.org/10.1016/j.wear.2010.01.022

    Article  CAS  Google Scholar 

  39. Q. Gao, W. Wang, G. Yi et al., High temperature and room temperature tribological behaviors of in-situ carbides reinforced Ni-based composites by reactive sintering Ni and Ti2AlC precursor. Wear 488, 204165 (2022). https://doi.org/10.1016/j.wear.2021.204165

    Article  CAS  Google Scholar 

  40. Y.Q. Wang, A.M. Afsar, J.H. Jang et al., Room temperature dry and lubricant wear behaviors of Al2O3f/SiCp/Al hybrid metal matrix composites. Wear 268, 863–870 (2010). https://doi.org/10.1016/j.wear.2009.11.010

    Article  CAS  Google Scholar 

  41. E. Sharghi, A. Farzadi, Simulation of strain rate, material flow, and nugget shape during dissimilar friction stir welding of AA6061 aluminum alloy and Al-Mg2Si composite. J. Alloys Compd. 748, 953–960 (2018). https://doi.org/10.1016/j.jallcom.2018.03.145

    Article  CAS  Google Scholar 

  42. M. Hourmand, S. Farahany, A.A. Sarhan et al., Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int. J. Adv. Manuf. Technol. 77, 831–838 (2015). https://doi.org/10.1007/s00170-014-6491-2

    Article  Google Scholar 

  43. E. Safary, R. Taghiabadi, M.H. Ghoncheh, Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates. Int. J. Miner. Metall. Mater. 29, 1249–1260 (2022). https://doi.org/10.1007/s12613-020-2244-4

    Article  CAS  Google Scholar 

  44. BS1490. Specification for aluminium and aluminium alloy ingots and castings for general engineering purposes. British Standard Institution, London, UK (1988)

  45. ASTM G99, 2017 Edition, January 1, 2017—Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus

  46. J. Yao, X. Shi, W. Zhai et al., Influence of lubricants on wear and self-lubricating mechanisms of Ni3Al matrix self-lubricating composites. J. Mater. Eng. Perform. 24, 280–295 (2015). https://doi.org/10.1007/s11665-014-1266-3

    Article  CAS  Google Scholar 

  47. H. Ghandvar, M.A. Jabbar, S.S.R. Koloor et al., Role B4C addition on microstructure, mechanical, and Wear characteristics of Al-20% Mg2Si hybrid metal matrix composite. Appl. Sci. 11, 3047 (2021). https://doi.org/10.3390/app11073047

    Article  CAS  Google Scholar 

  48. Y. He, H. Xu, B. Jiang et al., Microstructure, mechanical and tribological properties of (APC+ B4C)/Al hybrid composites prepared by hydrothermal carbonized deposition on chips. J. Alloys Compd. 888, 161578 (2021). https://doi.org/10.1016/j.jallcom.2021.161578

    Article  CAS  Google Scholar 

  49. V. Kavimani, K.S. Prakash, T. Thankachan, Surface characterization and specific wear rate prediction of r-GO/AZ31 composite under dry sliding wear condition. Surf. Interface 6, 143–153 (2017). https://doi.org/10.1016/j.surfin.2017.01.004

    Article  CAS  Google Scholar 

  50. S.Q. Wang, M.X. Wei, Y.T. Zhao, Effects of the tribo-oxide and matrix on dry sliding wear characteristics and mechanisms of a cast steel. Wear 269, 424–434 (2010). https://doi.org/10.1016/j.wear.2010.04.028

    Article  CAS  Google Scholar 

  51. W. Zhang, S. Yamashita, T. Kumazawa et al., Influence of surface roughness parameters and surface morphology on friction performance of ceramics. J. Ceram. Soc. Jpn.Jpn. 127, 837–842 (2019). https://doi.org/10.2109/jcersj2.19124

    Article  CAS  Google Scholar 

  52. A.R. Riahi, A.T. Alpas, The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear 251, 1396–1407 (2001). https://doi.org/10.1016/S0043-1648(01)00796-7

    Article  Google Scholar 

  53. Y.S. Mao, L. Wang, K.M. Chen et al., Tribo-layer and its role in dry sliding wear of Ti–6Al–4V alloy. Wear 297, 1032–1039 (2013). https://doi.org/10.1016/j.wear.2012.11.063

    Article  CAS  Google Scholar 

  54. P. Wang, M. Hirose, Y. Suzuki et al., Carbon tribo-layer for super-low friction of amorphous carbon nitride coatings in inert gas environments. Surf. Coat. Technol. 221, 163–172 (2013). https://doi.org/10.1016/j.surfcoat.2013.01.045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the SERB for funding and the National Institute of Technology Durgapur, India for their research laboratories and all their support.

Funding

The authors are grateful for the financial support provided by the Science & Engineering Research Board (SERB), SERB Sanction Order No: EEQ/ 2018/000592.

Author information

Authors and Affiliations

Authors

Contributions

RB completed the experiments and wrote the main manuscript text, prepared all the figures, PB helped in the investigation and writing of the manuscript, MM reviewed the manuscript and MKM supervised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manas Kumar Mondal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, R., Biswas, P., Mallik, M. et al. High Temperature and Lubricating Wear Behaviour of In-Situ Al-20Mg2Si Composite. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01167-7

Keywords

Navigation