Skip to main content
Log in

Effect of Various Mg/Si Ratios on Microstructure and Structural Properties of Thixoextruded Al-Si-Mg Alloys

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Semisolid forming is a processing technique which involves working between the semisolid temperature ranges. By powder metallurgy route, globular grains can be obtained which is a prerequisite for semisolid processing. In this work, Al-Si-Mg alloy with different Mg/Si ratios of 0.75, 1, 1.5, and 2 have been extruded and the mechanical and metallurgical properties prior and after extrusion process have been evaluated. Differential thermal analysis was used to determine the solidus and liquidus point temperatures within the range of 560 to 580 °C. Extrusion was carried out for three different temperatures namely (i) near solidus (ts), (ii) near eutectic (te), and (iii) near liquidus temperatures (tl) and three different strain rates (0.1 s−1, 0.2 s−1 and 0.3 s−1) respectively. Specimens were demarcated into three regions (head, middle, and tail) with tail region showing high hardness (65 HV) properties whereas head and middle regions displaying higher densities (90-95%). Similarly, specimens extruded at eutectic temperatures offered average density (90%) and high hardness (65 HV). Among the ratios, R=2 offered high mechanical properties. Grain size analysis revealed that R=0.75 had coarse grains (160 μm) and more spherical grains (0.9) but as the ratio increased the grain size decreased (40 μm). Deep learning technique like convolutional neural networks were used for feature prediction which predicted the 𝜶-Al grains with an accuracy of above 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

As this manuscript is a part of ongoing research at this point of time data cannot be shared.

References

  1. Mallapur DG, Udupa KR, Kori SA (2011) Studies on the influence of grain refining and modification on microstructure and mechanical properties of forged A356 alloy. Mater Sci Eng A 528:4747–4752

    Article  Google Scholar 

  2. Lee S-L, Cheng Y-C, Chen W-C et al (2012) Effects of strontium and heat treatment on the wear-corrosion property of Al–7Si–0.3 Mg alloy. Mater Chem Phys 135:503–509

    Article  CAS  Google Scholar 

  3. Li Q, Li F, Xia T et al (2015) Effects of in-situ γ-Al2O3 particles and heat treatment on the microstructure and mechanical properties of A356 aluminium alloy. J Alloys Compd 627:352–358

    Article  CAS  Google Scholar 

  4. Mohamed AMA, Samuel AM, Samuel FH, Doty HW (2009) Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8% Si cast alloy. Mater Des 30:3943–3957

    Article  CAS  Google Scholar 

  5. Haghdadi N, Zarei-Hanzaki A, Abedi HR, Sabokpa O (2012) The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy. Mater Sci Eng A 549:93–99

    Article  CAS  Google Scholar 

  6. Li JH, Zarif MZ, Albu M et al (2014) Nucleation kinetics of entrained eutectic Si in Al–5Si alloys. Acta Mater 72:80–98

    Article  CAS  Google Scholar 

  7. Basavakumar KG, Mukunda PG, Chakraborty M (2008) Influence of grain refinement and modification on microstructure and mechanical properties of Al–7Si and Al–7Si–2.5 Cu cast alloys. Mater Charact 59:283–289

    Article  CAS  Google Scholar 

  8. Jiang W, Zhu J, Li G et al (2021) Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting. J Mater Sci Technol 88:119–131

    Article  CAS  Google Scholar 

  9. Zhu J, Jiang W, Li G et al (2020) Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J Mater Process Technol 283:116699

    Article  CAS  Google Scholar 

  10. Li P, Liu S, Zhang L, Liu X (2013) Grain refinement of A356 alloy by Al–Ti–B–C master alloy and its effect on mechanical properties. Mater Des 47:522–528

    Article  CAS  Google Scholar 

  11. Praveen TR, Nayaka HS, Swaroop S (2019) Influence of equal channel angular pressing and laser shock peening on fatigue behaviour of AM80 alloy. Surf Coat Technol 369:221–227

    Article  CAS  Google Scholar 

  12. Praveen TR, Nayaka HS, Swaroop S, Gopi KR (2020) Strength enhancement of magnesium alloy through equal channel angular pressing and laser shock peening. Appl Surf Sci 512:145755

    Article  CAS  Google Scholar 

  13. Praveen TR, Gopi KR, Nayaka HS (2018) Numerical simulation of shot peening process on equal channel angular pressed magnesium alloy. Silicon 10:2463–2472

    Article  CAS  Google Scholar 

  14. Farahany S, Ourdjini A, Bakar TAA, Idris MH (2014) A new approach to assess the effects of Sr and Bi interaction in ADC12 Al–Si die casting alloy. Thermochim Acta 575:179–187

    Article  CAS  Google Scholar 

  15. Ludwig TH, Dæhlen ES, Schaffer PL, Arnberg L (2014) The effect of Ca and P interaction on the Al–Si eutectic in a hypoeutectic Al–Si alloy. J Alloys Compd 586:180–190

    Article  CAS  Google Scholar 

  16. Zhong-wei C, Wan-qi J, Rui-jie Z (2005) Superheat treatment of Al–7Si–0.55 Mg alloy melt. Mater Lett 59:2183–2185

    Article  Google Scholar 

  17. Xu CL, Wang HY, Qiu F et al (2006) Cooling rate and microstructure of rapidly solidified Al–20 wt.% Si alloy. Mater Sci Eng A 417:275–280

    Article  Google Scholar 

  18. McDonald SD, Nogita K, Dahle AK (2004) Eutectic nucleation in Al–Si alloys. Acta Mater 52:4273–4280

    Article  CAS  Google Scholar 

  19. Dahle AK, Nogita K, McDonald SD et al (2005) Eutectic modification and microstructure development in Al–Si Alloys. Mater Sci Eng A 413:243–248

    Article  Google Scholar 

  20. Jiang W, Fan Z, Dai Y, Li C (2014) Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy. Mater Sci Eng A 597:237–244

    Article  CAS  Google Scholar 

  21. Nogita K, Knuutinen A, McDonald SD, Dahle AK (2001) Mechanisms of eutectic solidification in Al–Si alloys modified with Ba, Ca, Y and Yb. J Light Met 1:219–228

    Article  Google Scholar 

  22. Nogita K, Yasuda H, Yoshiya M et al (2010) The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys. J Alloys Compd 489:415–420

    Article  CAS  Google Scholar 

  23. Sha M, Wu S, Wan L (2012) Combined effects of cobalt addition and ultrasonic vibration on microstructure and mechanical properties of hypereutectic Al–Si alloys with 0.7% Fe. Mater Sci Eng A 554:142–148

    Article  CAS  Google Scholar 

  24. Elsebaie O, Mohamed AMA, Samuel AM et al (2011) The role of alloying additives and aging treatment on the impact behavior of 319 cast alloy. Mater Des 32:3205–3220

    Article  CAS  Google Scholar 

  25. Vissers R, van Huis MA, Jansen J et al (2007) The crystal structure of the β′ phase in Al–Mg–Si alloys. Acta Mater 55:3815–3823

    Article  CAS  Google Scholar 

  26. Salleh MS, Omar MZ, Syarif J (2015) The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al–5% Si–Cu alloys. J Alloys Compd 621:121–130

    Article  CAS  Google Scholar 

  27. Zedan Y, Alkahtani S (2013) Influence of the microstructure on the machinability of heat-treated Al–10.8% Si cast alloys: Role of copper-rich intermetallics. J Mater Process Technol 213:167–179

    Article  CAS  Google Scholar 

  28. Hekmat-Ardakan A, Ajersch F (2010) Thermodynamic evaluation of hypereutectic Al–Si (A390) alloy with addition of Mg. Acta Mater 58:3422–3428

    Article  CAS  Google Scholar 

  29. Yıldırım M, Özyürek D (2013) The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys. Mater Des 51:767–774

    Article  Google Scholar 

  30. Thirugnanam A, Sukumaran K, Pillai UTS et al (2007) Effect of Mg on the fracture characteristics of cast Al–7Si–Mg alloys. Mater Sci Eng A 445:405–414

    Article  Google Scholar 

  31. Mandal A, Chippa N, Jayasankar K, Mukherjee PS (2014) Effect of high magnesium content on microstructure of Al–7Si alloy. Mater Lett 117:168–170

    Article  CAS  Google Scholar 

  32. Hekmat-Ardakan A, Ajersch F, Chen X-G (2011) Microstructure modification of Al–17% Si alloy by addition of Mg. J Mater Sci 46:2370–2378

    Article  CAS  Google Scholar 

  33. Nafisi S, Ghomashchi R (2006) Grain refining of conventional and semi-solid A356 Al–Si alloy. J Mater Process Technol 174:371–383

    Article  CAS  Google Scholar 

  34. Hernandez FCR, Sokolowski JH (2006) Thermal analysis and microscopical characterization of Al–Si hypereutectic alloys. J Alloys Compd 419:180–190

    Article  Google Scholar 

  35. Xu X, Yang Z, Ye Y et al (2016) Effects of various Mg/Si ratios on microstructure and performance property of Al-Mg-Si alloy cables. Mater Charact 119:114–119

    Article  CAS  Google Scholar 

  36. Kaushik R, Kumar S (2019) Image Segmentation Using Convolutional Neural Network. Int J Sci Technol Res 8(11):667

  37. Sjölander E, Seifeddine S (2010) The heat treatment of Al–Si–Cu–Mg casting alloys. J Mater Process Technol 210:1249–1259

    Article  Google Scholar 

  38. Vijeesh V, Prabhu KN (2014) Computer aided cooling curve analysis and microstructure of cerium added hypereutectic Al–Si (LM29) alloy. Trans Indian Inst Met 67:541–549

    Article  CAS  Google Scholar 

  39. Nafisi S, Emadi D, Ghomashchi R (2008) Impact of Mg addition on solidification behaviour of Al–7% Si alloy. Mater Sci Technol 24:718–724

    Article  CAS  Google Scholar 

  40. Gupta AK, Lloyd DJ, Court SA (2001) Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater Sci Eng A 316:11–17

    Article  Google Scholar 

  41. Kim BJ, Jung SS, Hwang JH et al (2019) Effect of eutectic Mg2Si phase modification on the mechanical properties of Al-8Zn-6Si-4Mg-2Cu cast alloy. Metals (Basel) 9:32

    Article  CAS  Google Scholar 

  42. Caceres CH, Davidson CJ, Griffiths JR, Wang QG (1999) The effect of Mg on the microstructure and mechanical behavior of Al-Si-Mg casting alloys. Metall Mater Trans A 30:2611–2618

    Article  Google Scholar 

  43. Baradarani B, Raiszadeh R (2011) Precipitation hardening of cast Zr-containing A356 aluminium alloy. Mater Des 32:935–940

    Article  CAS  Google Scholar 

  44. Donati L, Dzwonczyk JS, Zhou J, Tomesani L (2008) Microstructure prediction of hot-deformed aluminium alloys. Key Engineering Materials. Trans Tech Publ, pp 107–116

  45. Li Q, Li B, Li J et al (2017) Effects of the addition of Mg on the microstructure and mechanical properties of hypoeutectic Al–7% Si alloy. Int J Met 11:823–830

    Google Scholar 

  46. Yamamoto K, Takahashi M, Kamikubo Y et al (2020) Effect of Mg content on age-hardening response, tensile properties, and microstructures of a T5-treated thixo-cast hypoeutectic Al–Si alloy. Mater Sci Eng A 798:140089

    Article  CAS  Google Scholar 

  47. Mirzadeh H, Najafizadeh A (2010) Prediction of the critical conditions for initiation of dynamic recrystallization. Mater Des 31:1174–1179

    Article  CAS  Google Scholar 

  48. Mongkhonthanaphon S, Limpiyakorn Y (2019) Classification of titanium microstructure with fully convolutional neural networks. In: Journal of Physics: Conference Series. IOP Publishing, p 12022

Download references

Acknowledgements

The authors are grateful to the Director of National Institute of Technology-Warangal, faculty members and laboratory staff of Mechanical Engineering Department as well as Metallurgical and Materials Engineering Department for their support throughout the completion of this work.

Author information

Authors and Affiliations

Authors

Contributions

M. J. Davidson: Conceptualization, Methodology, Editing, C. S. P Rao: Editing, Supervision, Abeyram M Nithin: Experimentation and characterization.

Corresponding author

Correspondence to Abeyram M. Nithin.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Conflict of Interest

All authors declare that they have no competing interests.

Conflict of Interest

All authors declare that there is no conflict of interest.

Research Involving Human Participants and/or Animals

Not applicable.

Consent for Publication

Yes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.05 mb)

ESM 2

(DOCX 18.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nithin, A.M., Davidson, M.J. & Rao, C.S.P. Effect of Various Mg/Si Ratios on Microstructure and Structural Properties of Thixoextruded Al-Si-Mg Alloys. Silicon 14, 11675–11686 (2022). https://doi.org/10.1007/s12633-022-01689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01689-5

Keywords

Navigation