Skip to main content
Log in

Effects of Electromagnetic Stirring process on Melt Quality of A356 Aluminum Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In A356 aluminum alloy, the effect of electromagnetic stirring process on the melt quality such as density index, hydrogen and oxygen content, and the inclusion amount were investigated. To determine the optimal EMS condition for the aluminum alloy, a numerical study of EMS was applied and the electromagnetic force strength, which is the main source for stirring the melt, was predicted according to the EMS application conditions. In this study, the melt cleaning effect of the EMS process was analyzed by measuring the cleanliness of the solidified A356 alloy samples cast with and without the EMS process. After applying EMS process, the deviation of density index (DI) and hydrogen content in the cast samples according to the specimen position decreased, and it was confirmed that EMS was effective in homogenizing molten metal quality. In the case of the center of the top position, the hydrogen content in the sample decreased by 39.8% after EMS application, and a clear degassing effect was observed. Compared to the cast sample without EMS application, the amount of inclusions decreased by 40 to 55% when EMS was applied. From this, it can be concluded that EMS process has the effect of homogenizing and improving molten metal quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. G. Zhu, J. Xu, Z. Zhang, Y. Bai, L. Shi, Acta Metall. Sin. 22, 408–414 (2009). https://doi.org/10.1016/S1006-7191(08)60116-7

    Article  CAS  Google Scholar 

  2. M.C. Flemings, Metall. Trans. A 22, 957–981 (1991)

    Article  Google Scholar 

  3. N. Li, W. Mao, X. Geng, Trans. Nonferrous Met. Soc. China 32, 739–749 (2022)

    Article  CAS  Google Scholar 

  4. G. Li, W.Y. Qu, M. Luo, L. Cheng, C. Guo, X.G. Li, Z. Xu, X.G. Hu, D.Q. Li, H.X. Lu, Q. Zhu, Trans. Nonferrous Met. Soc. China 31, 3255–3280 (2021). https://doi.org/10.1016/S1003-6326(21)65729-1

    Article  CAS  Google Scholar 

  5. A. Guo, X. Qiu, Z. Ke, J. Zhao, Int. J. Met. 16, 663–673 (2022). https://doi.org/10.1007/s40962-021-00621-8

    Article  CAS  Google Scholar 

  6. L. Yao, H. Hao, S. Gu, H. Dong, X. Zhang, Trans. Nonferrous Met. Soc. China 20, s388–s392 (2010)

    Article  CAS  Google Scholar 

  7. M. Rogal, Sci. Technol. (United Kingdom) 33, 759–764 (2017). https://doi.org/10.1080/02670836.2017.1295212

    Article  CAS  Google Scholar 

  8. C. Mapelli, A. Gruttadauria, M. Peroni, J. Mater. Process. Technol. 210, 306–314 (2010)

    Article  CAS  Google Scholar 

  9. S. Wu, S. Lü, P. An, H. Nakae, Mater. Lett. 73, 150–153 (2012)

    Article  CAS  Google Scholar 

  10. R. Canyook, J. Wannasin, S. Wisuthmethangkul, M.C. Flemings, Acta Mater. 60, 3501–3510 (2012)

    Article  CAS  Google Scholar 

  11. A. Lemieux, J. Langlais, D. Bouchard, X. Grant Chen, Trans Nonferrous Met. Soc. China 20, 1555–1560 (2010). https://doi.org/10.1016/S1003-6326(09)60338-1

    Article  CAS  Google Scholar 

  12. M.A. Easton, H. Kaufmann, W. Fragner, Mater. Sci. Eng. A 420, 135–143 (2006)

    Article  Google Scholar 

  13. O. Granath, M. Wessén, H. Cao, Int. J. Cast Met. Res. 21, 349–356 (2008)

    Article  CAS  Google Scholar 

  14. Y. Bai, J. Xu, Z. Zhang, L. Shi, Trans. Nonferrous Met. Soc. China 19, 1104–1109 (2009)

    Article  CAS  Google Scholar 

  15. X. Chen, Z. Zhang, J. Xu, Trans. Nonferrous Met. Soc. China 20, s873–s877 (2010)

    Article  CAS  Google Scholar 

  16. S. Agrawal, A.K. Ghose, I. Chakrabarty, Mater. Des. 113, 195–206 (2017)

    Article  CAS  Google Scholar 

  17. Y. He, W. Ma, G. Lv, Y. Zhang, Y. Lei, X. Yang, J. Clean. Prod. 185, 389–398 (2018)

    Article  CAS  Google Scholar 

  18. N. Barman, P. Kumar, P. Dutta, J. Mater. Process. Technol. 209, 5912–5923 (2009)

    Article  CAS  Google Scholar 

  19. X. Dong, L. He, X. Huang, P. Li, J. Mater. Process. Technol. 222, 197–205 (2015)

    Article  CAS  Google Scholar 

  20. C.G. Kang, J.W. Bae, B.M. Kim, J. Mater. Process. Technol. 187–188, 344–348 (2007)

    Article  Google Scholar 

  21. G. Eisaabadi, A. Nouri, Int. J. Met. 12, 292–297 (2018). https://doi.org/10.1007/s40962-017-0161-8

    Article  CAS  Google Scholar 

  22. M. Du, F. Wang, X. Du, W. Wang, P. Mao, Z. Wang, L. Zhou, Z. Liu, Int. J. Met. 17, 373–385 (2023). https://doi.org/10.1007/s40962-022-00781-1

    Article  CAS  Google Scholar 

  23. H. Li, J. Jie, H. Chen, P. Zhang, T. Wang, T. Li, Mater. Sci. Eng. A 624, 140–147 (2015)

    Article  CAS  Google Scholar 

  24. Z. Yan, M. Chen, J. Yang, L. Yang, H. Gao, Mater. Manuf. Process. 28, 957–961 (2013). https://doi.org/10.1080/10426914.2013.763971

    Article  CAS  Google Scholar 

  25. L. Li, W. Liang, L. Yang, F. Cao, K. Sun, C. Ban, J. Cui, Int. J. Met. 17, 399–413 (2023). https://doi.org/10.1007/s40962-022-00780-2

    Article  CAS  Google Scholar 

  26. S.M. Cho, B.G. Thomas, JOM 72, 3610–3627 (2020)

    Article  CAS  Google Scholar 

  27. S. Li, Y. Li, H. Guo, Z. Wen, Z. Zhu, Mater. Today Commun. 32, 103898 (2022)

    Article  CAS  Google Scholar 

  28. H. Zhang, J. Cui, Trans. Nonferrous Met. Soc. China 21, 2134–2139 (2011)

    Article  CAS  Google Scholar 

  29. S. Basit, S. Birinci, N. Maraşlı, Int. J. Met. 16, 814–825 (2022). https://doi.org/10.1007/s40962-021-00641-4

    Article  CAS  Google Scholar 

  30. H.S. Jang, H.J. Kang, P. Yoon, G. Lee, J.B. Jeon, J.Y. Park, E.S. Kim, S. Shin, Metals (Basel) 9, 1–13 (2019). https://doi.org/10.3390/met9111235

    Article  CAS  Google Scholar 

  31. S.W. Hudson, D. Apelian, Int. J. Met. 10, 315–321 (2016). https://doi.org/10.1007/s40962-016-0030-x

    Article  Google Scholar 

  32. L. Zhang, R. Jiang, X. Li, R. Li, L. Zhang, Mater. Sci. Technol. (United Kingdom) 35, 1392–1400 (2019)

    Article  CAS  Google Scholar 

  33. S.K. Kim, C. Do Lee, K.H. Choe, H. Cho, Y.J. Kim, Int. J. Met. 13, 450–462 (2019). https://doi.org/10.1007/s40962-018-0276-6

    Article  CAS  Google Scholar 

  34. H.S. Jang, G.H. Lee, J.B. Jeon, Y.S. Choi, S. Shin, J. Mater. Res. Technol. 19, 2645–2656 (2022)

    Article  CAS  Google Scholar 

  35. S.M. Karabanov, D. V. Suvorov, D.Y. Tarabrin, E. V. Slivkin, O. Belyakov, A.S. Karabanov, in Proceeding–2018 IEEE International Conference Environment and Electrical Engineering, 2018 IEEE Industrial & Commercial Power Systems Europe. EEEIC/I CPS Europe (2018), p. 1–5

  36. S. Li, P. Lan, J. Zhang, Miner. Met. Mater. Ser. Part F 3, 223–236 (2018). https://doi.org/10.1007/978-3-319-72059-3_21

    Article  Google Scholar 

  37. Y. Ren, W. Ma, K. Wei, W. Yu, Y. Dai, K. Morita, Vacuum 109, 82–85 (2014)

    Article  CAS  Google Scholar 

  38. M. Gatzen, Z. Tang, F. Vollertsen, Phys. Procedia 12, 56–65 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by code number (S2640396) from the Ministry of SMEs and Startups, Republic of Korea. This paper is an invited submission to IJMC selected from presentations at the 74th World Foundry Congress, held October 16 to 20, 2022, in Busan, Korea, and has been expanded from the original presentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sunmi Shin or Jong Bae Jeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited submission to IJMC selected from presentations at the 74th World Foundry Congress, held October 16 to 20, 2022, in Busan, Korea, and has been expanded from the original presentation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S., Jeon, J.B., Jang, H.S. et al. Effects of Electromagnetic Stirring process on Melt Quality of A356 Aluminum Alloy. Inter Metalcast 17, 2652–2662 (2023). https://doi.org/10.1007/s40962-023-01052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01052-3

Keywords

Navigation