Skip to main content
Log in

Effects of Internal Electromagnetic Stirring on the Microstructure Refinement and Composition Homogenization of Large-Scale 7075 Aluminum Alloy Billet

  • Advanced Casting and Melt Processing Technology for Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

An innovative melt treatment method known as internal electromagnetic stirring is proposed and used in direct chill casting to refine the microstructure and homogenize the composition of a large-scale 7075 aluminum alloy billet. The effects of internal electromagnetic stirring on the billet are investigated. The results show that the internal electromagnetic stirring significantly refines the microstructure and decreases macrosegregation compared with conventional direction chill casting. The average grain size is decreased to 211–219 μm, and the largest relative positive and negative macrosegregation rates of Zn, Mg, and Cu are decreased to 2.44% and 2.11%, 1.56% and 1.32%, and 2.64% and 1.98%, respectively. The internal electromagnetic stirring refines the microstructure by increasing the number of nuclei, creating a relatively low and homogeneous temperature field, and decreasing the sump depth. Furthermore, the internal electromagnetic stirring decreases the macrosegregation by inhibiting the thermo-solutal convection, strengthening the equivalent shrinkage-induced flow, and decreasing the permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.X. Zheng, H.W. Liu, Y.C. Ren, and L.X. Zhu, Int. J. Adv. Manuf. Tech. 106, 503. (2020).

    Article  Google Scholar 

  2. P. Liu, J.Y. Hu, H.X. Li, S.Y. Sun, and Y.B. Zhang, J. Manuf. Process. 60, 578. (2020).

    Article  Google Scholar 

  3. P. Zhou, Y.L. Song, L. Hua, J. Lu, J.H. Zhang, and F. Wang, Mater. Sci. Eng. A 759, 498. (2019).

    Article  Google Scholar 

  4. J.C. Williams, and A.J.E. Starke, Acta Mater. 51, 5775. (2003).

    Article  Google Scholar 

  5. Y. Song, Z.M. Zhang, K. Wang, H.X. Li, and Z.Z. Zhu, J. Wuhan Univ. Technol. Mater. Sci. Ed. 34, 1433. (2019).

    Article  Google Scholar 

  6. T. Dursun, and C. Soutis, Mater. Des. 56, 862. (2014).

    Article  Google Scholar 

  7. L. Jiang, F.G. Li, J. Cai, R.T. Wang, Z.W. Yuan, and F.M. Xue, Mater. Des. 42, 369. (2012).

    Article  Google Scholar 

  8. N.M. Han, X.M. Zhang, S.D. Liu, B. Ke, and X. Xin, Mater. Sci. Eng. A 528, 3714. (2011).

    Article  Google Scholar 

  9. Y. Deng, Z.M. Yin, and J.W. Huang, Mater. Sci. Eng. A 528, 1780. (2011).

    Article  Google Scholar 

  10. P.S. Mohanty, and J.E. Gruzleski, Acta. Metall. Mater 43, 2001. (1995).

    Article  Google Scholar 

  11. R.Q. Li, Z.L. Liu, P.H. Chen, Z.T. Zhong, and X.Q. Li, Adv. Eng. Mater. 19, 1600375. (2017).

    Article  Google Scholar 

  12. D.G. Eskin, Physical Metallurgy of Direct Chill Casting of Aluminum Alloys (CRC, Boca Raton, 2008), pp 9–12.

    Book  Google Scholar 

  13. R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman, Prog. Mater. Sci. 53, 421. (2008).

    Article  Google Scholar 

  14. D.G. Eskin, and L. Katgerman, Mater. Sci. Forum 630, 193. (2009).

    Article  Google Scholar 

  15. D.G. Eskin, Light Metals (Springer, New York, 2014), pp 855–860.

    Google Scholar 

  16. F. Dong, X.X. Li, L.H. Zhang, L.Y. Ma, and R.Q. Li, Ultrason. Sonochem. 31, 150. (2016).

    Article  Google Scholar 

  17. S. Komarov, and D. Kuznetsov, Int. J. Refract. Met. Hard Mater. 35, 76. (2012).

    Article  Google Scholar 

  18. Y.B. Zuo, J.Z. Cui, J. Dong, and F.X. Yu, Mater. Sci. Eng. A 408, 176. (2005).

    Article  Google Scholar 

  19. J.M. Drezet, and M. Plata, Essential Readings in Light Metals (Springer, New York, 2016), pp 867–876.

    Book  Google Scholar 

  20. C. Mapelli, A. Gruttadauria, and M. Peroni, J. Mater. Process Technol. 210, 306. (2010).

    Article  Google Scholar 

  21. S.J. Guo, Q.C. Le, Z.H. Zhao, Y. Han, and J.Z. Cui, Int. J. Mater. Res. 97, 1539. (2006).

    Article  Google Scholar 

  22. M.O. Tang, J. Xu, Z.F. Zhang, and Y.L. Bai, Mater. Sci. Forum 689, 16. (2011).

    Article  Google Scholar 

  23. Z.F. Zhang, X.R. Chen, J. Xu, and L.K. Shi, Rare Met. 29, 635. (2010).

    Article  Google Scholar 

  24. C. Vives, Metall. Mater. Trans. B 23B, 189. (1992).

    Article  Google Scholar 

  25. Y. Qiu, Z.F. Zhang, and H.D. Zhao, Int. J. Mater. Res. 110, 1083. (2019).

    Article  Google Scholar 

  26. M.C. Flemings, Metall. Trans. B 22, 269. (1991).

    Article  Google Scholar 

  27. L. Zhou, Y.J. Luo, Z.L. Zhang, M. He, Y.N. Xu, Y.L. Zhao, S. Liu, L.J. Dong, and Z.F. Zhang, Materials 14, 708. (2021).

    Article  Google Scholar 

  28. E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, and P.S. Grant, Acta Mater. 70, 228. (2014).

    Article  Google Scholar 

  29. Y. Qiu, Z.F. Zhang, Y.J. Luo, M.W. Gao, and C.S. Chen, Int. J. Mater. Res. 109, 469. (2018).

    Article  Google Scholar 

  30. Y.J. Luo, Z.G. Wu, L. Zhou, M. He, Z.L. Zhang, X.M. Peng, and Z.F. Zhang, JOM 72, 4665. (2020).

    Article  Google Scholar 

  31. Y.B. Zuo, J.Z. Cui, Z.H. Zhao, H.T. Zhang, L. Li, and Q.F. Zhu, J. Mater. Sci. 47, 5501. (2012).

    Article  Google Scholar 

  32. Y.J. Luo, Z.F. Zhang, M.W. Gao, B. Li, and C.S. Chen, Int. J. Cast Met. Res. 32, 31. (2019).

    Article  Google Scholar 

  33. T. Zeng, and Y.J. Zhou, Materials 12, 3162. (2019).

    Article  Google Scholar 

  34. M. Založnik, A. Kumar, H. Combeau, M. Bedel, P. Jarry, and E. Waz, Adv. Eng. Mater. 13, 570. (2011).

    Article  Google Scholar 

  35. A. Pakanati, M. M’Hamdi, H. Combeau, and M. Založnik, Metall. Mater. Trans. A 49, 4710. (2018).

    Article  Google Scholar 

  36. A.V. Reddy, and C. Beckermann, Metall. Mater. Trans. B 28, 479. (1997).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Topmost Research Institution Construction Project of Guangdong Academy of Sciences (Grant Numbers 2021GDASYL-20210103107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Qiu.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Zhang, Z. Effects of Internal Electromagnetic Stirring on the Microstructure Refinement and Composition Homogenization of Large-Scale 7075 Aluminum Alloy Billet. JOM 73, 3812–3818 (2021). https://doi.org/10.1007/s11837-021-04875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04875-9

Navigation