Skip to main content

Numerical Simulation of Turbulence Flow and Solidification in a Bloom Continuous Casting Mould with Electromagnetic Stirring

  • Conference paper
  • First Online:
CFD Modeling and Simulation in Materials Processing 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Based on the Maxwell’s equations and a revised low-Reynolds number k-e turbulence model, a coupled three-dimensional numerical model has been developed to describe the electromagnetic field, fluid flow and solidification in a bloom continuous casting mould with electromagnetic stirring (M-EMS). The stirring electric current effects on the turbulent flow, temperature distribution and shell growth are investigated numerically. According to the simulation result, the electromagnetic force has a circumferential distribution on the strand transverse section, and a swirling flow field along the axial direction is observed in the mould region with the application of M-EMS, which changes the flow pattern of melt in the mould significantly and promotes the superheat dissipation of the molten steel. Moreover, overlarge current intensity will generate an inhomogeneous solidified shell at the exit of the mould due to the tangential velocity of the swirling flow and the installed position of the M-EMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kunstreich S (2003) Electromagnetic stirring for continuous casting. Revue de Métallurgie 100(4):395–408

    Google Scholar 

  2. Kunstreich S (2003) Electromagnetic stirring for continuous casting-Part 2. Revue de Métallurgie 100(11):1043–1061

    Google Scholar 

  3. Natarajan TT, El-Kaddah N (2004) Finite element analysis of electromagnetic and fluid flow phenomena in rotary electromagnetic stirring of steel. Appl Math Model 28(1):47–61

    Google Scholar 

  4. Trindade LB, Nadalon JEA, Vilela ACF et al (2007) Numerical modeling of inclusion removal in electromagnetic stirred steel billets. Steel Res Intl 78(9):708–713

    Google Scholar 

  5. Liu H, Xu M, Qiu S et al (2012) Numerical simulation of fluid flow in a round bloom mould with in-mould rotary electromagnetic stirring. Metall Mater Trans B 43(6):1657–1675

    Google Scholar 

  6. Cho MJ, Park EB, Kim SW (2010) Shield for improving wavy meniscus in the billet continuous casting mould with electromagnetic stirring. ISIJ Intl 50(8):1180–1184

    Google Scholar 

  7. Haiqi Y, Miaoyong Z (2010) Three-dimensional magnetohydrodynamic calculation for coupling multiphase flow in round billet continuous casting mould with electromagnetic stirring. IEEE Trans Magn 46(1):82–86

    Google Scholar 

  8. Sun H, Zhang J (2014) Study on the macrosegregation behavior for the bloom continuous casting: model development and validation. Metall Mater Trans B 45(3):1133–1149

    Google Scholar 

  9. Ren BZ, Chen DF, Wang HD et al (2015) Numerical simulation of fluid flow and solidification in bloom continuous casting mould with electromagnetic stirring. Ironmak Steelmak 42(6):401–408

    Google Scholar 

  10. Maurya A, Jha PK (2017) Influence of electromagnetic stirrer position on fluid flow and solidification in continuous casting mould. Appl Math Model

    Google Scholar 

  11. Trindade LB, Vilela ACF, Vilhena MTMB et al (2002) Numerical model of electromagnetic stirring for continuous casting billets. IEEE Trans Magn 38(6):3658–3660

    Google Scholar 

  12. Jones WP, Launder BE (1973) The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. Intl J Heat Mass Transf 16(6):1119–1130

    Google Scholar 

  13. Aboutalebi MR, Hasan M, Guthrie RIL (1995) Coupled turbulent flow, heat, and solute transport in continuous casting processes. Metall Mater Trans B 26(4):731–744

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaquan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Lan, P., Zhang, J. (2018). Numerical Simulation of Turbulence Flow and Solidification in a Bloom Continuous Casting Mould with Electromagnetic Stirring. In: Nastac, L., Pericleous, K., Sabau, A., Zhang, L., Thomas, B. (eds) CFD Modeling and Simulation in Materials Processing 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72059-3_21

Download citation

Publish with us

Policies and ethics