Skip to main content
Log in

Microstructure and Properties of Al-Si-Mg-Cu-Cr Matrix Composites Reinforced Using in situ TiB2 Particles and (Ce + Yb)

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, Al–Si matrix composites containing different contents of in situ TiB2 particles and (Ce+Yb) were fabricated via a mixed salt–metal reaction of KBF4 and K2TiF6 and the effects of the reinforcement particles on the microstructure and mechanical properties of the composites were investigated. Results revealed that the addition of TiB2 particles and (Ce+Yb) further refined the α-Al grains and modified the eutectic Si phase of the composite. Moreover, the combined addition of (Ce+Yb) resulted in the suppression of TiB2 agglomeration, causing a notable modification in the distribution and morphology of TiB2 particles as well as a significant reduction in their size compared with the condition without the addition of (Ce+Yb). The mechanical properties of 3 wt.% TiB2/Al–Si matrix composites with the combined addition of 0.4 wt.% (Ce+Yb) reached the maximum values with the ultimate tensile strength, yield strength, and elongation of 372.4 MPa, 268.7 MPa, and 4.5%, respectively, which increased by 30.1%, 40.1%, and 9.8%, respectively, compared with those of Al–Si matrix alloy. Optical microscopy, scanning electron microscopy with energy-dispersive spectroscopy, and X-ray diffraction were used to demonstrate the presence of (Ce+Yb)-containing precipitates, other precipitates, and in situ TiB2 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Y.K. Li, X.D. Du, Y. Zhang et al., Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy. Appl. Phys. A. 586, 180–190 (2014). https://doi.org/10.1007/s00339-018-1568-7

    Article  CAS  Google Scholar 

  2. Y. Zou, H. Yan, B. Yu et al., Effect of rare earth Yb on microstructure and corrosion resistanceof ADC12 aluminum alloy. Intermetal. (2019). https://doi.org/10.1016/j.intermet.2019.106487

    Article  Google Scholar 

  3. V.S. Ayar, M.P. Sutaria, Comparative evaluation of ex situ and in situ method of fabricating aluminum/TiB2 composites. Inter. Metalcast. 15, 1047–1056 (2021). https://doi.org/10.1007/s40962-020-00539-7

    Article  CAS  Google Scholar 

  4. S.K. Shaha, F. Czerwinski, W. Kasprzak et al., Microstructure and mechanical properties of Al-Si cast alloy with additions of Zr-V-Ti. Mater. Design. 83, 801–812 (2015). https://doi.org/10.1016/j.matdes.2015.05.057

    Article  CAS  Google Scholar 

  5. A.K. Yadav, V. Kumar, Ankit et al., Microstructure and mechanical properties of an in situ Al 356-Mg2Si-TiB2 hybrid composite prepared by stir and cooling slope casting. Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00804-x

    Article  Google Scholar 

  6. J. Barrirero, J. Li, M. Engstler et al., Cluster formation at the Si/liquid interface in Sr and Na modified Al-Si alloys. Scripta. Mater. 117, 16–19 (2016). https://doi.org/10.1016/j.scriptamat.2016.02.018

    Article  CAS  Google Scholar 

  7. H.Y. Xiao, Y.G. Li, J.W. Geng et al., Effects of nano-sized TiB2 particles and Al3Zr dispersoids on microstructure and mechanical properties of Al-Zn-Mg-Cu based materials. T. Nonferr. Metal. Soc. 31(8), 2189–2207 (2021). https://doi.org/10.1016/S1003-6326(21)65648-0

    Article  CAS  Google Scholar 

  8. A. Kordijazi, D. Weiss, S. Das et al., Effect of solidification time on microstructure, wettability, and corrosion properties of A205–T7 aluminum alloys. Inter Metalcast 15, 2–12 (2021). https://doi.org/10.1007/s40962-020-00457-8

    Article  CAS  Google Scholar 

  9. H. Wang, H.M. Zhang, Z.S. Cui et al., Compressive response and microstructural evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite. T. Nonferr. Metal. Soc. 31(5), 1235–1248 (2021). https://doi.org/10.1016/S1003-6326(21)65574-7

    Article  CAS  Google Scholar 

  10. M. Hadian, H. Shahrajabian, M. Rafiei et al., Mechanical properties and microstructure of Al/(TiC+TiB2) composite fabricated by spark plasma sintering. Ceram. Int. 45(9), 12088–12092 (2019). https://doi.org/10.1016/j.ceramint.2019.03.106

    Article  CAS  Google Scholar 

  11. H.Z. Yi, N.H. Ma, X.F. Li et al., High-temperature mechanics properties of in situ TiB2p reinforced Al-Si alloy composites. Mater. Sci. Eng. A. 419(1–2), 12–17 (2006). https://doi.org/10.1016/j.msea.2005.10.020

    Article  CAS  Google Scholar 

  12. Y.X. Liu, R.C. Wang, C.Q. Peng et al., Microstructures and mechanical properties of in-situ TiB2/Al xSi 0.3Mg composites. Trans. Nonferr. Metal. Soc. 31(2), 331–344 (2021). https://doi.org/10.1016/S1003-6326(21)65499-7

    Article  CAS  Google Scholar 

  13. Q. Gao, S. Wu, S. Lu et al., Effects of ultrasonic vibration treatment on particles distribution of TiB2 particles reinforced aluminum composites. Mater. Sci. Eng. A. 680, 437–443 (2017). https://doi.org/10.1016/j.msea.2016.10.103

    Article  CAS  Google Scholar 

  14. S. Agrawal, A.K. Ghose, I. Chakrabarty et al., Effect of rotary electromagnetic stirring during solidification of in-situ Al-TiB2 composites. Mater. Design. 113, 195–206 (2017). https://doi.org/10.1016/j.matdes.2016.10.007

    Article  CAS  Google Scholar 

  15. M. Manoj, G.R. Jinu, J.S. Kumar et al., Effect of TiB2 Particles on the morphological, mechanical and corrosion behaviour of Al7075 metal matrix composite produced using stir casting process. Int. J. Metalcast (2021). https://doi.org/10.1007/s40962-021-00696-3

    Article  Google Scholar 

  16. S. Farahany, A. Ourdjini, H.R. Bakhsheshi-Rad et al., Microstructure, mechanical properties and corrosion behavior of Al-Si-Cu-Zn-X (X=Bi, Sb, Sr) die cast alloy. Trans. Nonferr. Metal. Soc. 26(1), 28–38 (2016). https://doi.org/10.1016/S1003-6326(16)64085-2

    Article  CAS  Google Scholar 

  17. X. Song, H. Yan, X. Zhang et al., Microstructure and mechanical properties of Al-7Si-0.7Mg alloy formed with an addition of (Pr+Ce). J. Rare Earths. 35(4), 412–418 (2017). https://doi.org/10.1016/S1002-0721(17)60927-x

    Article  CAS  Google Scholar 

  18. H. Qiu, H. Yan, Z. Hu et al., Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al-7Si-0.7Mg alloys. J. Alloy. Compd. 567, 77–81 (2013). https://doi.org/10.1016/j.jallcom.2013.03.050

    Article  CAS  Google Scholar 

  19. Q.L. Li, B.Q. Li, J.B. Li et al., Effect of yttrium addition on the microstructures and mechanical properties of hypereutectic Al-20Si alloy. Mater. Sci. Eng. A. 722, 47 (2018)

    Article  CAS  Google Scholar 

  20. R. Tao, Y. Zhao, X. Kai et al., The effects of Er addition on the microstructure and properties of an in situ nano ZrB2-reinforced A356.2 composite. J. Alloy. Compd. 731, 200–209 (2018). https://doi.org/10.1016/j.jallcom.2017.10.021

    Article  CAS  Google Scholar 

  21. D.N. Patel, M.P. Sutaria, Effect of trace rare earth Er addition on microstructure and tensile properties of 319 Al-Si-Cu alloy. Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-021-00730-4

    Article  Google Scholar 

  22. W. Qian, Y. Zhao, X. Kai et al., Synergistic reinforcement of in situ ZrB2+TiB2 particles and Er on microstructure and properties of 6082Al matrix composites. J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152198

    Article  Google Scholar 

  23. M.K. Qiu, S.L. Wang, X.X. Lei et al., Synergistic effects of the combined addition of (Ce+Yb) on the microstructure and mechanical properties of Al-Si-Mg-Cu-Cr casting alloy. Int. J. Metalcast. 16(3), 1206–1220 (2022). https://doi.org/10.1007/s40962-021-00673-w

    Article  CAS  Google Scholar 

  24. L.W. Li, Z.H. Han, M.Q. Gao et al., Microstructures, mechanical properties, and aging behavior of hybrid-sized TiB2 particulate-reinforced 2219 aluminum matrix composites. Mater. Sci. Eng. A. 4(2, Part A), 3315–3324 (2017). https://doi.org/10.1016/j.msea.2021.142180

    Article  CAS  Google Scholar 

  25. Z. Fan, Y. Wang, Y. Zhang et al., Grain refining mechanism in the Al/Al-Ti-B system. Acta. Mater. 84, 292–304 (2015). https://doi.org/10.1016/j.actamat.2014.10.055

    Article  CAS  Google Scholar 

  26. M.G. Mahmoud, Y. Zedan, V. Songmene et al., The use of rare earth metals in Al-Si-Cu casting alloys. Int. J. Metalcast. 16(2), 535–552 (2022). https://doi.org/10.1007/s40962-021-00640-5

    Article  CAS  Google Scholar 

  27. S.L. Zhang, X.X. Shi, Y.T. Zhao et al., Preparation, microstructures and mechanical properties of in-situ (TiB2+ZrB2)/AlSi9Cu3 composites. J. Alloy. Compd. 673, 349–357 (2016). https://doi.org/10.1016/j.jallcom.2016.02.243

    Article  CAS  Google Scholar 

  28. V.S. Ayar, M.P. Sutaria, Development and characterization of in situ AlSi5Cu3/TiB2 composites. Int. J. Metalcast. 14, 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x

    Article  CAS  Google Scholar 

  29. Y.F. Han, X.F. Liu, X.F. Bian et al., In situ TiB2 particulate reinforced near eutectic Al-Si alloy composites. Compos. Part. A. 33A(3), 439–444 (2002). https://doi.org/10.1016/S1359-835X(01)00124-5

    Article  CAS  Google Scholar 

  30. C.S. Kim, I. Sohn, M. Nezafati et al., Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J. Mater. Sci. 48(12), 4191–4204 (2013). https://doi.org/10.1007/s10853-013-7232-x

    Article  CAS  Google Scholar 

  31. A. Sanaty Zadeh, P.K. Rohatgi, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mat. Sci. Eng. A. 551, 302–302 (2012). https://doi.org/10.1016/j.msea.2012.04.039

    Article  Google Scholar 

  32. L.Y. Chen, J.Q. Xu, H. Choi et al., Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528(7583), 539 (2015). https://doi.org/10.1038/nature16445

    Article  CAS  Google Scholar 

  33. G. Liu, G.J. Zhang, F. Jiang et al., Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nature. Mater. 12(4), 344–350 (2013). https://doi.org/10.1038/NMAT3544

    Article  CAS  Google Scholar 

  34. Q.G. Wang, C.H. Caceres, J.R. Griffiths et al., Damage by eutectic particle cracking in aluminum casting alloys A356/357. Metall. Mater. Trans. A. 34A(12), 2901–2912 (2003). https://doi.org/10.1007/s11661-003-0190-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the supports from Science and Technology Agency of Anhui Province (202104a05020047 and 2022a05020032); Industrial Guiding Fund of Changfeng County and Hefei University of Technology (JZ2019QTXM0281); Intelligent Manufacturing Institute of HFUT (IMICZ2019003) and Fundamental Research Funds for the Central Universities (PA2020GDGP0054)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, M., Liu, H., Du, X. et al. Microstructure and Properties of Al-Si-Mg-Cu-Cr Matrix Composites Reinforced Using in situ TiB2 Particles and (Ce + Yb). Inter Metalcast 17, 1815–1826 (2023). https://doi.org/10.1007/s40962-022-00898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00898-3

Keywords

Navigation