Skip to main content
Log in

In situ Al-SiOC composite fabricated by in situ pyrolysis of a silicone polymer gel in aluminum melt

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In situ aluminum matrix composites were fabricated by the addition of a gelated BS290 silicone polymer precursor to molten aluminum where the polymer gel was pyrolyzed in the melt and produced ceramic phases with chemical composition close to that of SiOC. The results indicated successful incorporation of in situ formed micro-sized particles in the melt, which acted as reinforcement and nucleation sites in the aluminum matrix. Homogeneous dispersion of the in situ formed particles in the matrix was attributed to rapid release of a large amount of gas during pyrolysis, which would disintegrate the particles’ agglomerates. The fabricated composites had mostly equiaxed and much finer grains than their corresponding monolithic cast sample. To improve SiOC particles’ distribution and to remove the structural porosity, both composite and monolithic samples were hot extruded at 400 °C. Hardness, yield strength and compressive strength of the extruded composite sample were found to be about 23, 53 and 18% higher than those of the extruded monolithic sample, respectively. Fractography of the fracture surface of the tensile test samples indicated a ductile fracture mode for both extruded samples. Elastic modulus mismatch was recognized as the main strengthening mechanism for the composite sample.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Availability of data and materials

The data and samples generated during this study are available from the corresponding author on reasonable request.

References

  1. F. Chen, Z. Chen, F. Mao, T. Wang, Z. Cao, J. Mater. Sci. Eng. A (2015). https://doi.org/10.1016/j.msea.2014.12.033

    Article  Google Scholar 

  2. Z. Fathian, A. Maleki, B. Niroumand, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.01.067

    Article  Google Scholar 

  3. K.K. Chawla, Composite Materials: Science and Engineering, 3rd edn. (Springer, New York, 2012)

    Book  Google Scholar 

  4. S. Udvardy, M. Makhlouf, J. Nuechterlein, Development of high performance nano-composite materials. NADCA Trans. 2012, T12-033 (2012)

    Google Scholar 

  5. W. Garrett, J. Nuechterlein, I. Jo, M. Kaufman, J.J. Moore, D. Schwam, Squeeze casting of Aluminum MMC’s reinforced with SHS-produced TiC. NADCA Trans. 2012, T12-043 (2012)

    Google Scholar 

  6. B.V. Ramnath, C. Elanchezhian, R.M. Annamalai, S. Aravind, T.S.A. Atreya, V. Vignesh, C. Subramanian, Rev. Adv. Mater. Sci. 65, 55–60 (2014)

    Google Scholar 

  7. J. Hashim, L. Looney, M.S.J. Hashmi, J. Mater. Process Technol. 119, 324–328 (2001)

    Article  CAS  Google Scholar 

  8. J. Hashim, L. Looney, M.S.J. Hashmi, J. Mater. Process Technol. 119, 329–335 (2001)

    Article  CAS  Google Scholar 

  9. W. Zhou, Z.M. Xu, J. Mater. Process. Technol. (1997). https://doi.org/10.1016/S0924-0136(96)02647-7

    Article  Google Scholar 

  10. B.S.B. Reddy, K. Das, S. Das, J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-007-1827-z

    Article  Google Scholar 

  11. A. Basumallick, S. Ghosh, Int. J. Mach. Tools Manuf. (2007). https://doi.org/10.1080/10426910701384930

    Article  Google Scholar 

  12. T.G. Durai, K. Das, S. Das, J. Mater. Sci. Eng. A (2007). https://doi.org/10.1016/j.msea.2006.09.018

    Article  Google Scholar 

  13. V.S. Ayar, M.P. Sutaria, Int. J. Met. (2019). https://doi.org/10.1007/s40962-019-00328-x

    Article  Google Scholar 

  14. A. Maleki, M. Meratian, B. Niroumand, M. Gupta, Metall. Mater. Trans. A (2008). https://doi.org/10.1007/s11661-008-9645-8

    Article  Google Scholar 

  15. A. Maleki, B. Niroumand, M. Meratian, Metall. Mater. Eng. 21, 283–291 (2015)

    Article  CAS  Google Scholar 

  16. M.K. Surappa, D. Ahn, R. Raj, Metall. Mater. Trans. A (2008). https://doi.org/10.1007/s11661-008-9672-5

    Article  Google Scholar 

  17. K. Terauds, A.R. Anilchandra, R. Raj, Metall. Mater. Trans. A (2014). https://doi.org/10.1007/s11661-013-2130-z

    Article  Google Scholar 

  18. N.M. Chelliah, P. Padaikathan, M.K. Surappa, J. Mater. Sci. Eng. A (2018). https://doi.org/10.1016/j.msea.2018.02.023

    Article  Google Scholar 

  19. M. Senemar, B. Niroumand, A. Maleki, P. Rohatgi, J. Compos. Mater. (2018). https://doi.org/10.1177/0021998317702955

    Article  Google Scholar 

  20. M. Zare, B. Niroumand, A. Maleki, A. Allafchian, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.06.186

    Article  Google Scholar 

  21. S.Y. Oh, J.A. Cornie, K.C. Russell, Metall. Mater. Trans. A (1989). https://doi.org/10.1007/BF02653933

    Article  Google Scholar 

  22. G.M. Renlund, S. Prochazka, Mater. Res. (1991). https://doi.org/10.1557/JMR.1991.2723

    Article  Google Scholar 

  23. M. Malaki, A. Fadaei Tehrani, B. Niroumand, M. Gupta, Metals (2021). https://doi.org/10.3390/met11071034

    Article  Google Scholar 

  24. M. Zare, Synthesis of Aluminum Matrix Nano Composite Reinforced by BS290 Silicone Derived Ceramic Particles, M.Sc. thesis, Isfahan University of Technology (2018)

  25. H.K. Issa, A. Taherizadeh, A. Maleki, A. Ghaei, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.06.057

    Article  Google Scholar 

  26. L. Toma, C. Fasel, S. Lauterbach, H.J. Kleebe, R. Riedel, J. Eur. Ceram. Soc. (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.03.011

    Article  Google Scholar 

  27. S. Vaucher, J. Kuebler, O. Beffort, L. Biasetto, F. Zordan, P. Colombo, Compos. Sci. Technol. (2008). https://doi.org/10.1016/j.compscitech.2008.08.004

    Article  Google Scholar 

  28. N. Nagasima, N. Kubota, J. Vac. Sci. Technol. A (1977). https://doi.org/10.1116/1.569304

    Article  Google Scholar 

  29. B. Abbasipour, B. Niroumand, S.M. Monirvaghefi, Trans. Nonferrous Met. Soc. China (2010). https://doi.org/10.1016/S1003-6326(09)60339-3

    Article  Google Scholar 

  30. S. Amirkhanlou, M. Rahimian, M. Ketabchi, N. Parvin, P. Yaghinali, F. Carreño, Metall. Mater. Trans. A (2016). https://doi.org/10.1007/s11661-016-3666-5

    Article  Google Scholar 

  31. V.S. Ayar, M.P. Sutaria, Int. Metalcast. (2020). https://doi.org/10.1007/s40962-019-00328-x

    Article  Google Scholar 

  32. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. (2014). https://doi.org/10.1016/j.pmatsci.2013.09.002

    Article  Google Scholar 

  33. A. Dhal, S. Panigrahi, M.S. Shunmugam, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.08.062

    Article  Google Scholar 

  34. R. Perez-bustamante, R.E. Rupp, A.J. Weldon, T.J. Watt, K. Takata, E.M. Taleff, Light Metals TMS (2015). https://doi.org/10.1007/978-3-319-48248-4_30

    Article  Google Scholar 

  35. N.S. Kumar, R.K.S. Gauta, S. Mohan, Mater. Des. (2015). https://doi.org/10.1016/j.matdes.2015.05.020

    Article  Google Scholar 

  36. S. Songkuea, P. Sripan, S. Wisutmethangoon, J. Wannasin, T. Plookphol, Appl. Mech. Mater. (2014).

  37. L.F. Mondolfo, Aluminum Alloys: Structure and Properties, 1st edn. (Butterworths, London, 1976)

    Google Scholar 

  38. M. Shayan, B. Niroumand, J. Mater. Sci. Eng. A (2013). https://doi.org/10.1016/j.msea.2013.05.090

    Article  Google Scholar 

  39. M. Borouni, B. Niroumand, A. Maleki, Mater. Technol. 51, 945–951 (2017). https://doi.org/10.17222/mit.2017.036

    Article  CAS  Google Scholar 

  40. M. Baghi, B. Niroumand, R. Emadi, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.03.136

    Article  Google Scholar 

  41. P.S. Kumar, V. Kavimani, S.K. Prakash, G.S. Kumar, Inter Metalcast. (2020). https://doi.org/10.1007/s40962-019-00330-3

    Article  Google Scholar 

  42. V. Bharath, M. Nagaral, V. Auradi, S.A. Kori, Procedia Mater. Sci. 6, 1658–1667 (2014)

    Article  CAS  Google Scholar 

  43. S. Singh, D. Gupta, V. Jain, Inter Metalcast. (2020). https://doi.org/10.1007/s40962-020-00536-w

    Article  Google Scholar 

  44. H. Hao, X. Liu, C. Fang, X. Zhang, J. Mater. Sci. Eng. A (2017). https://doi.org/10.1016/j.msea.2017.04.114

    Article  Google Scholar 

  45. W. Garrett, J. Nuechterlein, I. Jo, A. Munitz, M.J. Kaufman, J.J. Moore, K. Young, C. Rice, A. Monroe, D. Schwam, R. Tomazin, NADCA Trans. 2011, T11–043 (2011)

  46. I. Jo, J. Nuechterlein, W. Garrett, A. Munitz, M.J. Kaufman, J.J. Moore, NADCA Trans. 55, 659 (2011)

    Google Scholar 

  47. T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, L. Gao, J. Mater. Sci. Eng. A (2014). https://doi.org/10.1016/j.msea.2014.03.021

    Article  Google Scholar 

  48. L. Dai, Z. Ling, Y. Bai, Compos. Sci. Technol. (2001). https://doi.org/10.1016/S0266-3538(00)00235-9

    Article  Google Scholar 

  49. F. Cverna, ASM Ready Reference: Thermal Properties of Metals (ASM International, Ohia, 2002)

    Google Scholar 

  50. C.S. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B.F. Schultz, Z. Bajestani-gohari, P.K. Rohatgi, K. Cho, J. Mater. Sci. 25, 4191–4204 (2013). https://doi.org/10.1007/s10853-013-7232-x

    Article  CAS  Google Scholar 

  51. M. Dehnavi, B. Niroumand, F. Ashrafizadeh, P.K. Rohatgi, J. Mater. Sci. Eng. A (2014). https://doi.org/10.1016/j.msea.2014.08.042

    Article  Google Scholar 

  52. Ü. Cöcen, K. Önel, Compos. Sci. Technol. (2002). https://doi.org/10.1016/S0266-3538(01)00198-1

    Article  Google Scholar 

  53. A.G. Pineau, A.A. Benzerga, T. Pardoen, Acta Mater. (2016). https://doi.org/10.1016/j.actamat.2015.l12.034

    Article  Google Scholar 

Download references

Funding

This work received no special funding.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript has been prepared by equal contribution of all the authors.

Corresponding author

Correspondence to Behzad Niroumand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest/competing interests.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, M., Maleki, A. & Niroumand, B. In situ Al-SiOC composite fabricated by in situ pyrolysis of a silicone polymer gel in aluminum melt. Inter Metalcast 16, 1327–1346 (2022). https://doi.org/10.1007/s40962-021-00658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00658-9

Keywords

Navigation