Skip to main content
Log in

Investigation of the Interfacial Heat Transfer Coefficient at the Metal–Mold Interface During Casting of an A356 Aluminum Alloy and AZ81 Magnesium Alloy into Steel and Graphite Molds

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Many types of alloys can be cast in graphite molds. The advantage of using graphite molds is that graphite has a higher thermal conductivity than steel and provides a higher alloy cooling rate. In this work, the solidification conditions in graphite and steel molds are compared. Cylindrical ingots of A356 aluminum and AZ81 magnesium alloys were cast into steel and graphite molds, and the temperature was recorded by thermocouples positioned in both the ingots and the molds. Using the error function, which is a measure of the difference between the experimental and simulated temperatures, the interfacial heat transfer coefficient (IHTC) versus the ingot surface temperature curves were obtained. The peak IHTC for ingot casting in the graphite mold was 2–3 times higher than that for the steel mold for both alloys. The solidification time and cooling rate for the solidification of the A356 and AZ81 ingots with varied sizes in the graphite and steel molds were calculated based on the simulation results. The duration of the solidification process in the steel mold was nearly two times longer than that for ingots in the graphite mold. The cooling rate in the graphite mold was nearly 1.5–2 times higher than that in the steel molds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. P. Sharifi, Y. Fan, H.B. Anaraki et al., Met. Mater. Trans. A. 47, 5159 (2016). https://doi.org/10.1007/s11661-016-3698-x

    Article  CAS  Google Scholar 

  2. N.A. Belov, A.N. Alabin, A.Yu. Prokhorov, Russ. J. Non-Ferr. Met. 50, 357 (2009). https://doi.org/10.3103/S1067821209040099

    Article  Google Scholar 

  3. N.A. Belov, A.N. Alabin, I.A. Matveeva, J. Alloy. Compd. 583, 206 (2014). https://doi.org/10.1016/j.jallcom.2013.08.202

    Article  CAS  Google Scholar 

  4. S. O’Connor, Adv. Mater. Process. 166, 29 (2008)

    Google Scholar 

  5. S. O’Connor, AMMTIAC Quart. 2, 3 (2007)

    Google Scholar 

  6. L. Jia, D. Xu, M. Li, J. Guo, H. Fu, Met. Mater. Int. 18, 55 (2012). https://doi.org/10.1007/s12540-012-0007-0

    Article  CAS  Google Scholar 

  7. V. Zanchuk, Adv. Mater. Process. 162, 66 (2004)

    CAS  Google Scholar 

  8. V. Zanchuk, Die Cast. Eng. 1, 38 (2006)

    Google Scholar 

  9. G.V. Mysov, Chem. Petrol. Eng. 11, 1038 (1975). https://doi.org/10.1007/BF01152456

    Article  Google Scholar 

  10. G. Baumeister, D. Buqezi-Ahmeti, J. Glaser, H.-J. Ritzhaupt-Kleissl, Microsyst. Technol. 17, 289 (2011). https://doi.org/10.1007/s00542-011-1237-7

    Article  CAS  Google Scholar 

  11. W.C. Chen, F.Y. Teng, C.C. Hung, Mater. Sci. Eng., C 35, 231 (2014). https://doi.org/10.1016/j.msec.2013.11.014

    Article  CAS  Google Scholar 

  12. A.Y.C. Nee, Handbook of Manufacturing Engineering and Technology (Springer, London, 2015)

    Google Scholar 

  13. K.N. Prabhu, K.M. Suresha, J. Mater. Eng. Perform. 13, 619 (2004). https://doi.org/10.1361/10599490420647

    Article  CAS  Google Scholar 

  14. K.N. Prabhu, W.D. Griffiths, Mater. Sci. Forum 329, 455 (2000). https://doi.org/10.4028/www.scientific.net/MSF.329-330.455

    Article  Google Scholar 

  15. D. Wang, C. Zhou, G. Xu, A. Huaiyuan, J. Mater. Process. Technol. 214, 1275 (2014). https://doi.org/10.1016/j.jmatprotec.2014.01.009

    Article  Google Scholar 

  16. W.D. Griffiths, K. Kawai, J. Mater. Sci. 45, 2330 (2010). https://doi.org/10.1007/s10853-009-4198-9

    Article  CAS  Google Scholar 

  17. Z. Sun, H. Hu, X. Niu, J. Mater. Process. Technol. 211, 1432 (2011). https://doi.org/10.1016/j.jmatprotec.2011.03.014

    Article  CAS  Google Scholar 

  18. Y. Nishida, W. Droste, S. Engler, Metall. Mater. Trans. B 17, 833 (1986). https://doi.org/10.1007/BF02657147

    Article  Google Scholar 

  19. D. Bouchard, S. Leboeuf, J.P. Nadeau, R.I.L. Guthrie, M. Isac, J. Mater. Sci. 44, 1923 (2009). https://doi.org/10.1007/s10853-008-2888-3

    Article  CAS  Google Scholar 

  20. A. Prasad, I.F. Bainbridge, Metall. Mater. Trans. A 44, 3099 (2013). https://doi.org/10.1007/s11661-013-1646-6

    Article  CAS  Google Scholar 

  21. S.L. Lu, F.R. Xiao, S.J. Zhang, Y.W. Mao, B. Liao, Appl. Therm. Eng. 73, 512 (2014). https://doi.org/10.1016/j.applthermaleng.2014.07.073

    Article  Google Scholar 

  22. K.N. Prabhu, B. Chowdary, N. Venkataraman, J. Mater. Eng. Perform. 14, 604 (2005). https://doi.org/10.1361/105994905X66015

    Article  CAS  Google Scholar 

  23. L. Chen, Y. Wang, L. Peng, P. Fu, H. Jiang, Exp. Therm. Fluid Sci. 54, 196 (2014). https://doi.org/10.1016/j.expthermflusci.2013.12.010

    Article  CAS  Google Scholar 

  24. G. Palumbo et al., Appl. Therm. Eng. 78, 682 (2015). https://doi.org/10.1016/j.applthermaleng.2014.11.046

    Article  CAS  Google Scholar 

  25. F. Bertelli, N. Cheung, A. Garcia, Appl. Therm. Eng. 61, 577 (2013). https://doi.org/10.1016/j.applthermaleng.2013.08.034

    Article  CAS  Google Scholar 

  26. M.A. Martorano, J.D.T. Capocchi, Int. J. Heat Mass Transfer. 43, 2541 (2000). https://doi.org/10.1016/S0017-9310(99)00298-7

    Article  CAS  Google Scholar 

  27. W.D. Griffiths, Metall. Mater. Trans. B 31, 285 (2000). https://doi.org/10.1007/s11663-000-0047-6

    Article  Google Scholar 

  28. J. Kron, T. Antonsson, H. Fredriksson, Int. J. Cast Met. Res. 14, 275 (2002). https://doi.org/10.1080/13640461.2002.11819445

    Article  Google Scholar 

  29. N. Akar, H.M. Şahin, N. Yalçin, K. Kocatepe, Exp. Heat Transfer. 21, 83 (2008). https://doi.org/10.1080/08916150701647785

    Article  CAS  Google Scholar 

  30. J.A. Hines, Metall. Mater. Trans. B 35, 299 (2004). https://doi.org/10.1007/s11663-004-0031-7

    Article  Google Scholar 

  31. J. Swan, M. Ward, R.C. Reed, Mater. Sci. Forum 765, 276 (2013). https://doi.org/10.4028/www.scientific.net/MSF.765.276

    Article  CAS  Google Scholar 

  32. M. Trovant, S.A. Argyropoulos, Can. Metall. Q. 37, 185 (1998). https://doi.org/10.1179/cmq.1998.37.3-4.185

    Article  CAS  Google Scholar 

  33. A.S. Sabau, Int. J. Cast Met. Res. 19, 188 (2006). https://doi.org/10.1179/136404606225023390

    Article  CAS  Google Scholar 

  34. J.H. Kuo, R.J. Weng, W.S. Hwang, Mater. Trans. 47, 2547 (2006). https://doi.org/10.2320/matertrans.47.2547

    Article  CAS  Google Scholar 

  35. M.A. Taha, N.A. El-Mahallawy, M.T. El-Mestekawi, A.A. Hassan, Mater. Sci. Technol. 17, 1093 (2001). https://doi.org/10.1179/026708301101511004

    Article  CAS  Google Scholar 

  36. ASM International Handbook Committee, ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, tenth ed., Vol. 2. (ASM International, Materials Park, 2002), pp. 624–1546

  37. A.Yu. Kachalov, V.D. Belov, V.E. Bazhenov, A.V. Fadeev, Tsvetnye Metally. 2019, 84 (2019). https://doi.org/10.17580/tsm.2019.06.12

    Article  Google Scholar 

  38. ESI Group, ProCAST 2010.0 User’s Manual (ESI Group, 2010), https://myesi.esi-group.com/system/files/documentation/ProCAST/2010/ProCAST_20100_UM.pdf. Accessed 1 August 2019

  39. L. Yang et al., Intermetallics 66, 149 (2015). https://doi.org/10.1016/j.intermet.2015.07.006

    Article  CAS  Google Scholar 

  40. S.L. Lu et al., Appl. Therm. Eng. 93, 518 (2016). https://doi.org/10.1016/j.applthermaleng.2015.09.114

    Article  CAS  Google Scholar 

  41. J.A. Dantzig, M. Rappaz, Solidification (EPFL Press, Lausanne, 2009), pp. 105–151

    Book  Google Scholar 

  42. E.I. Zhmurikov, I.V. Savchenko, S.V. Stankus, O.S. Yatsuk, L.B. Tecchio, Nucl. Instr. Meth. Phys. Res. A. 674, 79 (2012). https://doi.org/10.1016/j.nima.2012.01.015

    Article  CAS  Google Scholar 

  43. V.E. Bazhenov, A.V. Koltygin, Yu.V. Tselovalnik, A.V. Sannikov, Russ. J. Non Ferr. Met. 58, 114 (2017). https://doi.org/10.3103/S1067821217020031

    Article  Google Scholar 

  44. R.D. Pehlke, A. Jeyarajan, H. Wada, Summary of thermal properties for casting alloys and mold materials. STIN 83, 36293 (1982)

    Google Scholar 

  45. P.A. Schweitzer, Metallic Materials: Physical, Mechanical, and Corrosion Properties (Marcel Dekker Inc, New York, 2003). https://doi.org/10.1201/9780203912423

    Book  Google Scholar 

  46. ASM International Handbook Committee, ASM Handbook, Properties and selection: Irons, steels and high performance alloys, Vol. 1, tenth ed., (ASM International, Materials Park, 1990)

  47. R.E. Taylor, H. Groot, Thermophysical Properties of POCO Graphite (Purdue University, West Lafayette, IN, 1978), p. 16

    Book  Google Scholar 

  48. A.I. Bencomo, R.I. Bisbal, R. Morales, Revista Materia 13, 294 (2008). https://doi.org/10.1590/S1517-70762008000200007

    Article  CAS  Google Scholar 

  49. S.I. Bakhtiyarov, R.A. Overfelt, S.G. Teodorescu, J. Mater. Sci. 36, 4643 (2001). https://doi.org/10.1023/A:1017946130966

    Article  CAS  Google Scholar 

  50. K.O. Yu, Modeling for Casting and Solidification Processing (CRC Press, New York, 2001)

    Book  Google Scholar 

  51. A. Lindemann, J. Schmidt, M. Todte, T. Zeuner, Thermochim. Acta 382, 269 (2002). https://doi.org/10.1016/S0040-6031(01)00752-3

    Article  CAS  Google Scholar 

  52. A. Rudajevová, M. Staněk, P. Lukáč, Mater. Sci. Eng., A 341, 152 (2003). https://doi.org/10.1016/S0921-5093(02)00233-2

    Article  Google Scholar 

  53. S. Lee, H.J. Ham, S.Y. Kwon, S.W. Kim, C.M. Suh, Internat. J. Thermophys. 34, 2343 (2013). https://doi.org/10.1007/s10765-011-1145-1

    Article  CAS  Google Scholar 

  54. A. Rudajevová, P. Lukáč, Acta Universitatis Carolinae. Mathematica et Physica. 41, 3 (2000)

    Google Scholar 

  55. A. Rudajevová, J. Kiehn, K.U. Kainer, B.L. Mordike, P. Lukáč, Scripta Mater. 40, 57 (1998). https://doi.org/10.1016/S1359-6462(98)00390-X

    Article  Google Scholar 

  56. A.L. Pinter, Carbon 9, 637 (1971). https://doi.org/10.1016/0008-6223(71)90086-8

    Article  Google Scholar 

  57. S. Bidhar, N. Simos, D. Senor, P. Hurh, Nucl. Mater. Energy. 24, 100761 (2020). https://doi.org/10.1016/j.nme.2020.100761

    Article  Google Scholar 

  58. N.A. El-Mahallawy, A.M. Assar, J. Mater. Sci. Lett. 7, 205 (1988). https://doi.org/10.1007/BF01730171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research received financial support from the Ministry of Science and Higher Education in the Russian Federation (Agreement No. 075-11-2019-045 from 22 November 2019) under the program “Scientific and technological development of the Russian Federation” according to governmental decree N 218 dated 9 April 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Bazhenov.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, V.E., Tselovalnik, Y.V., Koltygin, A.V. et al. Investigation of the Interfacial Heat Transfer Coefficient at the Metal–Mold Interface During Casting of an A356 Aluminum Alloy and AZ81 Magnesium Alloy into Steel and Graphite Molds. Inter Metalcast 15, 625–637 (2021). https://doi.org/10.1007/s40962-020-00495-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00495-2

Keywords

Navigation