Skip to main content
Log in

Simulation and Experimental Validation of A356 and AZ91 Alloy Fluidity in a Graphite Mold

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Graphite mold casting is a promising technique owing to its ability to provide high cooling rates and suitability for many types of alloys. The fluidity of A356 aluminum and AZ91 magnesium alloys cast into graphite molds was determined at casting temperatures of 670 °C–810 °C. As expected, the fluidity of AZ91 was lower than that of A356. The critical solid fractions for A356 aluminum and AZ91 magnesium alloys were determined by comparing simulated spiral fluidity test lengths with those obtained experimentally. For graphite mold casting, the critical solid fractions for A356 and AZ91 alloys were in the range of 0.12–0.15 and 0.13–0.17, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. V.E. Bazhenov, Yu.V. Tselovalnik, A.V. Koltygin, V.D. Belov, Submitted to Int. J. Metalcast.

  2. J. Major, M. Hartlieb, Int. J. Metalcast. 3, 43 (2009)

    Article  CAS  Google Scholar 

  3. S. O’Connor, Adv. Mater. Process. 166, 29 (2008)

    Google Scholar 

  4. S. O’Connor, AMMTIAC Quart. 2, 3 (2007)

    Google Scholar 

  5. L. Jia, D. Xu, M. Li, J. Guo, H. Fu, Met. Mater. Int. 18, 55 (2012)

    Article  CAS  Google Scholar 

  6. V. Zanchuk, Adv. Mater. Process. 162, 66 (2004)

    CAS  Google Scholar 

  7. V. Zanchuk, Die Cast Eng. 1, 38 (2006)

    Google Scholar 

  8. L. Wang, H. Yan, J. Teng, X. Liu, X. Wang, Y. Su, J. Guo, J. Mater. Res. Tech. (in press). https://doi.org/10.1016/j.jmrt.2020.02.071. (2020)

  9. G. Baumeister, D. Buqezi-Ahmeti, J. Glaser, H.-J. Ritzhaupt-Kleissl, Microsyst. Technol. 17, 289 (2011)

    Article  CAS  Google Scholar 

  10. W.C. Chen, F.Y. Teng, C.C. Hung, Mater. Sci. Eng. C 35, 231 (2014)

    Article  Google Scholar 

  11. A.Y.C. Nee, Handbook of Manufacturing Engineering and Technology (Springer, London, 2015)

    Google Scholar 

  12. H. Huang, Y.X. Wang, P.H. Fu, L.M. Peng, H.Y. Jiang, W.Y. Xu, Int. J. Cast Met. Res. 26, 213 (2013)

    Article  CAS  Google Scholar 

  13. M. Sabatino, L. Arnberg, D. Apelian, Int. J. Metalcast. 2, 17 (2008)

    Article  Google Scholar 

  14. T.O. Mbuya, Trans. Am. Foundry. Soc. 114, 163 (2006)

    CAS  Google Scholar 

  15. M. Di Sabatino, L. Arnberg, Metall. Sci. Technol. 22, 9 (2004)

    Google Scholar 

  16. K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai, M. Chakraborty, J. Alloys Compd. 456, 201 (2008)

    Article  CAS  Google Scholar 

  17. Y. Motoyama, H. Tokunaga, M. Yoshida, T. Maruyama, T. Okane, J. Mater. Process. Tech. 276, 116394 (2020)

    Article  CAS  Google Scholar 

  18. J. Jakumeit, E. Subasic, M. Bünck, Shape Casting: 5th International Symposium 2014 (Wiley, San Diego, 2014), pp. 253–260

    Google Scholar 

  19. V.E. Bazhenov, A.V. Petrova, A.V. Koltygin, Int. J. Metalcast. 12, 514 (2018)

    Article  CAS  Google Scholar 

  20. M.A.A. Khan, A.K. Sheikh, Int. J. Simul. Model. 17, 197 (2018)

    Article  Google Scholar 

  21. ESI Group, ProCAST 2010.0 User’s Manual (ESI Group, 2010), https://myesi.esi-group.com/system/files/documentation/ProCAST/2010/ProCAST_20100_UM.pdf. Accessed 1 August 2019

  22. L. Yang, L.H. Chai, Y.F. Liang, Y.W. Zhang, C.L. Bao, S.B. Liu, J.P. Lin, Intermetallics 66, 149 (2015)

    Article  CAS  Google Scholar 

  23. S.-L. Lu, F.-R. Xiao, Z.-H. Guo, L.-J. Wang, H.-Y. Li, B. Liao, Appl. Therm. Eng. 93, 518 (2016)

    Article  CAS  Google Scholar 

  24. J.A. Dantzig, M. Rappaz, Solidification (EPFL Press, Lausanne, 2009), pp. 105–151

    Book  Google Scholar 

  25. E.I. Zhmurikov, I.V. Savchenko, S.V. Stankus, O.S. Yatsuk, L.B. Tecchio, Nucl. Instrum. Methods Phys. Res. Sect. A 674, 79 (2012)

    Article  CAS  Google Scholar 

  26. G. Palumbo, V. Piglionico, A. Piccininni, P. Guglielmi, D. Sorgente, L. Tricarico, Appl. Therm. Eng. 78, 682 (2015)

    Article  CAS  Google Scholar 

  27. V.E. Bazhenov, A.V. Koltygin, Yu.V. Tselovalnik, Russ. J. Non-Ferr. Met. 57, 686 (2016)

    Article  Google Scholar 

  28. V.E. Bazhenov, A.V. Petrova, A.V. Koltygin, Yu.V. Tselonalnik, Tsvetnye Metally 2017, 89 (2017)

    Article  Google Scholar 

  29. W.P. Goss, R.G. Miller, Proceedings of Thermal Performance of the Exterior Envelopes of Buildings (ASHRAE, New York, 1992), pp. 193–203

    Google Scholar 

  30. A.S.M. Handbook, Properties and selection: Nonferrous alloys and special-purpose materials, vol. 2, 10th edn. (ASM International, Materials Park, 2002), pp. 624–1546

    Google Scholar 

  31. A.K. Dahle, P.A. Tøndel, C.J. Paradies, L. Arnberg, Metall. Mater. Trans. A 27, 2305 (1996)

    Article  Google Scholar 

  32. A.K. Dahle, L. Arnberg, Acta Mater. 45, 547 (1997)

    Article  CAS  Google Scholar 

  33. N.L.M. Veldman, A.K. Dahle, D.H. StJohn, L. Arnberg, Metall. Mater. Trans. A 32, 147 (2001)

    Article  Google Scholar 

  34. L. Arnberg, G. Chai, L. Backerud, Mater. Sci. Eng., A 173, 101 (1993)

    Article  Google Scholar 

  35. M. Król, T. Tański, G. Matula, P. Snopiński, A. Tomiczek, Arch. Metall. Mater. 60, 2993 (2015)

    Article  Google Scholar 

  36. F. Yavari, S.G. Shabestari, Int. J. Cast Met. Res. 32, 85 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, Project Number 19-38-90003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Bazhenov.

Ethics declarations

Conflict of interest

The authors report no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazhenov, V.E., Petrova, A.V., Rizhsky, A.A. et al. Simulation and Experimental Validation of A356 and AZ91 Alloy Fluidity in a Graphite Mold. Inter Metalcast 15, 319–325 (2021). https://doi.org/10.1007/s40962-020-00468-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00468-5

Keywords

Navigation