Skip to main content

Advertisement

Log in

The effect of increased pressure on interfacial heat transfer in the aluminium gravity die casting process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Contraction and distortion of a casting during cooling within a mould can force their respective surfaces together, with the associated increased interfacial pressure resulting in increased interfacial heat transfer. This problem has been examined for the case of gravity and low pressure die casting of an Al alloy, where an insulating coating is applied to the die cavity to assist filling of the mould. The degree of interfacial pressure was estimated to be, for a typical small die casting, at most about 21 MPa. Repeated applications of a compressive load showed that a freshly applied die coating became thinner and smoother, until a stable situation was reached after about ten applications. The interfacial heat transfer coefficient was estimated to be increased by about 20%, with an increase in the applied pressure by a factor of two, from 7 MPa to 14 MPa, and increased by about 40%, with an increase in the applied pressure by a factor of three, from 7 MPa to 21 MPa. The heat transfer mechanisms between the casting and the die surfaces were evaluated to produce a simple model of interfacial heat transfer which included conduction through the points of actual contact, in parallel with conduction through the interfacial gas between the points of actual contact, both mechanisms being in series with the heat transfer by conduction through the die coating. Evaluation of the model produced agreement with experimentally determined values of the interfacial heat transfer coefficient to within about 15%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hattel J (ed) (2005) Fundamentals of numerical modelling of casting processes. Polyteknisk Forlag, Kgs. Lyngby

  2. Ho K, Pehlke RD (1985) Met Trans B 16B:359

    Google Scholar 

  3. Narayan Prabhu K, Griffiths WD (2002) Mat Sci Technol 18:804

    Article  Google Scholar 

  4. Sahin HM, Kocatepe K, Kayikci R, Akar N (2006) Energy Convers Manag 47:19

    Article  Google Scholar 

  5. O’Mahoney D, Browne DJ (2000) Exp Thermal Fluid Sci 22:111

    Article  Google Scholar 

  6. Ferreira IL, Spinelli JE, Nestler B, Garcia A (2008) Mat Chem Phys 111:444

    Article  Google Scholar 

  7. Cheung N, Ferreira IL, Pariona MM, Quaresma JMV, Garcia A (2009) Mat Design 30:3592

    Article  Google Scholar 

  8. Ferreira IL, Spinelli JE, Pires JC, Garcia A (2005) Mat Sci Eng A 408:317

    Article  Google Scholar 

  9. Arunkumar S, Sreenivas Rao KV, Prasanna Kumar TS (2008) Int J Heat Mass Transf 51:2676

    Article  Google Scholar 

  10. Nayak RK, Sundarraj S (2009) Int J Cast Met Res 22:294

    Article  Google Scholar 

  11. Campbell J (1991) Castings. Butterworth-Heinemann, London

    Google Scholar 

  12. Cheung N, Santos NS, Quaresma JMV, Dulikravich GS, Gracia A (2009) Int J Heat Mass Transf 52:451

    Article  Google Scholar 

  13. Spinelli JE, Ferreira IL, Garcia A (2006) Struct Multidisc Optim 31:241

    Article  Google Scholar 

  14. Mirbagheri SMH, Shrinparvar M, Chirazi A (2007) Mat Design 28:2106

    Article  Google Scholar 

  15. Mirbagheri SMH (2007) Commun Numer Methods Eng 23:295

    Article  MathSciNet  Google Scholar 

  16. Meneghini A, Sangiorgi Cellini G, Tomesani L (2007) Int J Cast Met Res 20:159

    Article  Google Scholar 

  17. Aweda JO, Adeyemi MB (2009) J Mat Proc Technol 209:1477

    Article  Google Scholar 

  18. Chattopadhyay H (2007) J Mat Proc Technol 186:174

    Article  Google Scholar 

  19. Guo Z-P, Xiong S-M, Cho S-H, Choi J-K (2008) J Mater Sci Technol 24:131

    Article  Google Scholar 

  20. Guo Z-P, Xiong S-M, Liu BC, Li M, Allison J (2008) Met Mat Trans A 39A:2896

    Article  Google Scholar 

  21. Guo Z-P, Xiong S-M, Liu BC, Li M, Allison J (2009) Int J Cast Met Res 327-330

  22. Guo Z-P, Xiong S-M, Liu BC, Li M, Allison J (2008) Int J Heat Mass Transf 51:6032

    Article  Google Scholar 

  23. Dour G, Dargusch M, Davidson C, Nef A (2005) J Mat Proc Technol 169:223

    Article  Google Scholar 

  24. Hamasaiid A, Dour G, Dargusch MS, Loulou T, Davidson C, Savage G (2008) Met Mat Trans A 39A:853

    Article  Google Scholar 

  25. Dargusch MS, Hamasaiid A, Dour G, Loulou T, Davidson CJ, StJohn DH (2007) Adv Eng Mat 9:995

    Article  Google Scholar 

  26. Sun RC (1970) AFS Cast Metals Res J 6:105

    Google Scholar 

  27. Kumar TSP, Prabhu KN (1991) Met Mat Trans B 22B:717

    Article  Google Scholar 

  28. Trovant M, Argyropoulis S (2000) Met Mat Trans B 31B:75

    Article  Google Scholar 

  29. Griffiths WD (2000) Met Mat Trans B 31B:285

    Article  Google Scholar 

  30. Griffiths WD (2000) Mat Sci Technol 16:255

    Google Scholar 

  31. Hallam CP, Griffiths WD (2004) Met Mat Trans B 35B:721

    Article  Google Scholar 

  32. Isaac J, Reddy GP, Sharma GK (1985) Br Foundryman 78:465

    Google Scholar 

  33. Chiesa F (1990) AFS Trans 98:193

    Google Scholar 

  34. Lee Z-H, Kim T-G, Choi Y-S (1998) Met Mat Trans B 29B:1051

    Article  Google Scholar 

  35. Hamasaiid A, Dargusch MS, Davidson CJ, Tovar S, Loulou T, Rezai-Aria F, Dour G (2007) Met Mat Trans A 38A:1303

    Article  Google Scholar 

  36. Martorano MA, Capocchi JDT (2000) Int J Heat Mass Transf 43:2541

    Article  Google Scholar 

  37. www.magmasoft.com (2009)

  38. Griffiths WD (1999) Met Mat Trans B 30B:473

    Article  Google Scholar 

  39. Kawai K (2004) PhD thesis, University of Birmingham, United Kingdom

Download references

Acknowledgements

The authors would like to gratefully acknowledge the technical assistance of Mr. Adrian Caden and Dr. Jean-Christophe Gebelin of the School of Metallurgy and Materials Science, University of Birmingham, Birmingham, United Kingdom, B15 2TT. The authors would also like to gratefully acknowledge the funding of a PhD studentship which enabled this work to be carried out by Foseco (FS) Ltd., Tamworth, Staffs., United Kingdom, B78 3XQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Griffiths.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, W.D., Kawai, K. The effect of increased pressure on interfacial heat transfer in the aluminium gravity die casting process. J Mater Sci 45, 2330–2339 (2010). https://doi.org/10.1007/s10853-009-4198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4198-9

Keywords

Navigation