Skip to main content

Advertisement

Log in

Diversity of Electrospinning Approach for Vascular Implants: Multilayered Tubular Scaffolds

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

The biomimetics of biological structures found in nature remains one of the most promising approaches to engineer functional tissues from natural or synthetic biocompatible materials for the replacement of damaged or injured parts of the human body. Recently, medical therapeutic regimes have advanced into a new era, overcoming the known mechanical and biological variances that occur when using autologous or synthetic grafts. Basically, the core concept of tissue biofabrication, commonly referred to as tissue engineering, is to find out the favorable cellular microenvironments to grow a living tissue prior to clinical uses. In fact, the ability of stem cells to regenerate is controlled via signaling pathways (growth factors) and supporting materials (scaffolds) that guide the cellular activities. After the first successful experiments to fabricate polymer fibers from their solutions, Cooley proposed the use of an electric field a century ago (Cooley (US 692:631,1902 ). The electrospinning technique has been continually developed as a fruitful polymer processing technique to draw ultrafine nonwoven fibers. Electrospun polymer fibers have been used for a wide range of technical and biotechnical applications such as filtration, organic solar cells, tissue engineering, and drug releasing implants. In this regard, this review begins with an overview about the various spinning approaches for the fabrication of polymer fibers as well as the basic principles of electrospinning process. In addition, this review will highlight vascular bypass surgery and, in particular, the needs for vascular tissue engineering. Finally, the review includes some of the latest attempts to improve the mechanical and biological properties of electrospun polymeric fibers and summarizes the challenges and prospects for the future.

Lay Summary

However, vascular defects are treated successfully via bypass surgical bypass grafting using autologous or synthetic vessels. The small-diameter vessels (less than 6) are often associated with high failure rate. This review reports some of the recent features that should be highlighted to fabricate an ideal graft for small-diameter vascular grafts. The review introduces multilayered conduits as an alternative approach to overcome the known mechanical and biological mismatches of single layered vascular grafts of electrospun polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cooley JF. Apparatus for electrically dispersing fluids. US 692,631, 1902.

  2. Nerem RM. Cellular engineering. Ann Biomed Eng. 1991;19:529–45.

    CAS  Google Scholar 

  3. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    CAS  Google Scholar 

  4. Kaihara S, Vacanti JP. Tissue engineering: toward new solutions for transplantation and reconstructive surgery. Arch Surg. 1999;134:1184–8.

    CAS  Google Scholar 

  5. Soto-Gutierrez A, Wertheim JA, Ott HC, Gilbert TW. Perspectives on whole-organ assembly: moving toward transplantation on demand. J Clin Invest. 2012;122:3817–23.

    CAS  Google Scholar 

  6. Atala A. Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res. 2004;7:15–31.

    Google Scholar 

  7. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445:874–80.

    CAS  Google Scholar 

  8. Laurencin CT, Nair LS. Regenerative engineering: approaches to limb regeneration and other grand challenges. Regenerative engineering and translational medicine. 2015;1(1–4):1–3.

    Google Scholar 

  9. Mescher AL, Neff AW. Regenerative capacity and the developing immune system. Adv Biochem Eng Biotechnol. 2005;93:39–66.

    CAS  Google Scholar 

  10. Brockes JP, Kumar A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nature Rev Mol Cell Biol. 2002;3:566–74.

    CAS  Google Scholar 

  11. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.

    CAS  Google Scholar 

  12. Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science. 2002;295:1009–14.

    CAS  Google Scholar 

  13. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8:153–70.

    CAS  Google Scholar 

  14. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    CAS  Google Scholar 

  15. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. ProgPolymSci. 2007;32:762–98.

    CAS  Google Scholar 

  16. Chen JP, Chen SH, Lai GJ. Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett. 2012;7:170.

    Google Scholar 

  17. Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. BiotechnolAdv. 2010;28:142–50.

    CAS  Google Scholar 

  18. Mogosanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463:127–36.

    CAS  Google Scholar 

  19. Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. 2008;12:301–47.

    Google Scholar 

  20. Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci. 2013;38:1487–503.

    CAS  Google Scholar 

  21. Kim BS, Park IK, Hoshiba T, Jiang HL, Choi YJ, Akaike T, et al. Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci. 2011;36:238–68.

  22. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.

    CAS  Google Scholar 

  23. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–21.

    CAS  Google Scholar 

  24. Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today. 2013;16:229–41.

    CAS  Google Scholar 

  25. Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces. 2004;39:125–31.

    CAS  Google Scholar 

  26. Müller WEG, Tolba E, Schröder HC, Diehl-Seifert B, Link T, Wang XH. Biosilicaloaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the osteoclast-related SaOS-2 cells. Biotechnol J. 2014;9:1312–21.

    Google Scholar 

  27. Christopherson GT, Song H, Mao HQ. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials. 2009;30:556–64.

    CAS  Google Scholar 

  28. Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 2004;10:33–41.

    CAS  Google Scholar 

  29. Bhattarai SR, Bhattarai Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25:877–86.

    Google Scholar 

  30. Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech2007; 40:1686–1693.

  31. Liu Q, Tian S, Zhao C, Chen X, Lei I, Wang Z, Ma PX. Porous nanofibrous poly(L-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. ActaBiomater 2015; 26:105–114.

  32. Venugopal J, Ramakrishna S. Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol. 2005;125(3):147–57.

    CAS  Google Scholar 

  33. Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl Mater Interfaces. 2009;1:1140–3.

    CAS  Google Scholar 

  34. Yang D, Liu X, Jin Y, Zhu Y, Zeng D, Jiang X, et al. Electrospinning of poly(dimethylsiloxane)/poly(methyl methacrylate) nanofibrous membrane: fabrication and application in protein microarrays. Biomacromolecules. 2009;10:3335–40.

  35. Schröder HC, Tolba E, Diehl-Seifert B, Wang XH, Müller WEG. Electrospinning of bioactive wound-healing nets. Prog MolSubcell Biol. 2017;55:259–90.

    Google Scholar 

  36. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X. Biodegradable electrospun fibers for drug delivery. J Control Release2003; 3: 227–231.

  37. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–53.

    CAS  Google Scholar 

  38. Dong Z, Kennedy SJ, Wu Y. Electrospinning materials for energy-related applications and devices. J Power Sources. 2011;196:4886–904.

    CAS  Google Scholar 

  39. Braghirolli DI, Steffens D, Pranke P. Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today2014; 19: 743–753.

  40. Tan S, Huang X, Wu B. Some fascinating phenomena in electrospinning processes and applications of electrospun nanofibers. PolymInt. 2007;56:1330–9.

    CAS  Google Scholar 

  41. Hunley MT, Long TE. Electrospinning functional nanoscale fibers: a perspective for the future. PolymInt. 2008;57:385–9.

    CAS  Google Scholar 

  42. Sano Y. Drying behavior of acetate filament in dry spinning. Drying Technol2001; 19: 1335–1359.

  43. Larrondo L, St. John Manley R. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys Ed 1981;19(6):909–920.

  44. Walther A, Timonen JV, Díez I, Laukkanen A, Ikkala O. Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater. 2011;23:2924–8.

    CAS  Google Scholar 

  45. Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16:1151–70.

    CAS  Google Scholar 

  46. Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed. 2007;46:5670–703.

    CAS  Google Scholar 

  47. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrost. 1995;35:151–60.

    CAS  Google Scholar 

  48. Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers. J Appl Phys. 2001;89:3018–26.

    CAS  Google Scholar 

  49. Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Appl Phys2001;90:4836–4846.

  50. Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–425.

    CAS  Google Scholar 

  51. Chakraborty S, Liao IC, Adler A, Leong KW. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv. Drug Deliv Rev. 2009;61:1043–54.

    CAS  Google Scholar 

  52. Morton WJ, inventor. Method of dispersing fluids. United States patent US 705,691. 1902.

  53. Gilbert W. De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellur (on the magnet and magnetic bodies, and on that great magnet the earth), Peter Short, London, 1628.

  54. Teo WE, Ramakrishna S. A review on electrospinning design and nanofiber assemblies. Nanotechnology. 2006;17:89–106.

    Google Scholar 

  55. Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Rev. 1914;3:2–69.

    Google Scholar 

  56. Formhals A. Process and apparatus for preparing artificial threads. US 1975504, 1934.

  57. Norton CL. Method of and apparatus for producing fibrous or filamentary material. US. 1936;20486513.

  58. Taylor GI. Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series a. Mathematical and Physical Sciences 1964;280(1382):383–397.

  59. Taylor GI. The force exerted by an electric field on a long cylindrical conductor. Proceedings of the Royal Society of London. Series a. Mathematical and Physical Sciences. 1966; 291(1425):145–158.

  60. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibres. J Electrostat 1995; 35: 151–160.

  61. Reznik SN, Yarin AL, Theron A, Zussman E. Transient and steady shapes of droplets attached to a surface in a strong electric field. J Fluid Mech. 2004;516:349–77.

    Google Scholar 

  62. Hohman MM, Shin M, Rutledge G. Electrospinning and electrically forced jets. I Stability theory Phys Fluids. 2001;13:2201.

  63. Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibres. JAppl Phys. 2001;89:3018–26.

    CAS  Google Scholar 

  64. Angammana CJ, Jayaram SH. Fundamentals of electrospinning and processing technologies. Part SciTechnol. 2016;34:72–82.

    CAS  Google Scholar 

  65. Thompson CJ, Chase GG, Yarin AL, Reneker DH. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer. 2007;48:6913–22.

    CAS  Google Scholar 

  66. Mohrman DE, Heller LJ. Cardiovascular Physiology. 5th Ed (2003). McGraw Hill, New York

    Google Scholar 

  67. Alexander RW, Schlant R C, Fuster V. Hurst’s the heart, arteries and veins, 9th Ed (1998). McGraw-hill, New York NY.

  68. Tortora GJ, Grabowski SR (eds) Principles of anatomy and physiology. 9th Ed. (2000) Wiley, New York, NY.

  69. Iaizzo PA. Handbook of cardiac anatomy, physiology, and devices: second edition. Humana Press. 2005;659.

  70. Folkman J. Tumor angiogensis: role in regulation of tumor growth. SympSoc DevBiol. 1974;30:43–52.

    CAS  Google Scholar 

  71. Faury G. Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. PatholBiol (Paris). 2001;49:310–25.

    CAS  Google Scholar 

  72. Humphrey JD. Mechanics of the arterial wall: review and directions. Crit Rev Biomed Eng. 1995;23:1–162.

    CAS  Google Scholar 

  73. Bou-Gharios G, Ponticos M, Rajkumar V, Abraham D. Extra-cellular matrix in vascular networks. Cell Prolif. 2004;37:207–20.

    CAS  Google Scholar 

  74. Jacob MP, Badier-Commander C, Fontaine V, Benazzoug Y, Feldman L, Michel JB. Extracellular matrix remodeling in the vascular wall. PatholBiol. 2001;49:326–32.

    CAS  Google Scholar 

  75. Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9:685–93.

    CAS  Google Scholar 

  76. Bos GW, Poot AA, Beugeling T, van Aken WG, Feijen J. Small-diameter vascular graft prostheses: current status. Arch Physiol Biochem. 1998;106:100–15.

    CAS  Google Scholar 

  77. Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI. Tissue engineering of small calibre vascular grafts. Eur J Cardiothoracic Surg. 2001;20:164–9.

    CAS  Google Scholar 

  78. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, et al. Functional arteries grown in vitro. Science. 1999;284:489–93.

  79. Merchant J, Tan SY. Alexis carrel (1873–1944): pioneer of vascular surgery and organ transplantation. Singap Med J. 2013;54:602–3.

    Google Scholar 

  80. Persijn G, Carrel A. TransplInt. 2012;25:367–8.

    Google Scholar 

  81. Menzoian JO, Koshar AL, Rodrigues N, Carrel A, Leriche R. Jean Kun lin and the history of bypass surgery. J VascSurg. 2011;54:571–4.

    Google Scholar 

  82. Testart J, Kunlin J (1904–1991). AnnVascSurg1995;9: S1–S6.

  83. Goetz RE, Rohman M, Haller JD, Dee R, Rosenak SS. Internal mammary-coronary artery anastomosis. J ThoracCardiovascSurg. 1961;41:378–86.

    CAS  Google Scholar 

  84. Haller JD, Olearchyk AS. Cardiology’s 10 greatest discoveries. Tex Heart Inst J Houston: Texas Heart Institute. 2002;29:342–4.

    Google Scholar 

  85. Kolesov VI, Potashov LV. Surgery of coronary arteries [in Russian]. EkspKhirAnesteziol. 1965;10:3–8.

    CAS  Google Scholar 

  86. Demikhov VP. Transplantation of vital organs in experiments. Moscow: Medgiz; 1960.

    Google Scholar 

  87. Demikhov VP. Experimental transplantation of vital organs. Authorized translation from the Russian by basil Haigh. New York: Consultant's Bureau; 1962.

  88. Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM. Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater. 2005;74:570–81.

    Google Scholar 

  89. Schwann TA, Engoren M, Bonnell M, Clancy C, Habib RH. Comparison of late coronary artery bypass graft survival effects of radial artery versus saphenous vein grafting in male and female patients. AnnThoracSurg. 2012;94:1485–91.

    Google Scholar 

  90. Lin CH, Hsia K, Ma H, Lee H, Lu JH. In vivo performance of decellularized vascular grafts: a review article. Int J Mol Sci. 2018;19(7):2101.

    Google Scholar 

  91. Tranquillo RT. The tissue-engineered small-diameter artery. Ann N Y AcadSci. 2002;961:251–4.

    Google Scholar 

  92. Deutsch M, Meinhart J, Vesely M, Fischlein T, Groscurth P, von Oppell U, et al. In vitro endothelialization of expanded polytetrafluoroethylene grafts: a clinical case report after 41 months of implantation. J Vasc Surg. 1997;25:757–63.

  93. Doi K, Matsuda T. Enhanced vascularization in a microporous polyurethane graft impregnated with basic fibroblast growth factor and heparin. J Biomed Mater Res. 1997;34:361–70.

    CAS  Google Scholar 

  94. Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI. Tissue engineering of small calibre vascular grafts. Eur J Cardiothoracic Surg. 2001;20:164–9.

    CAS  Google Scholar 

  95. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400.

    CAS  Google Scholar 

  96. L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12:47–56.

    Google Scholar 

  97. Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS, et al. Blood vessels engineered from human cells. Lancet. 2005;365:2122–4.

  98. Dahl SLM, Koh J, Prabhakar V, Niklason LE. Decellularizednative and engineered arterial scaffolds for transplantation. Cell Transplant. 2003;12:659–66.

    Google Scholar 

  99. Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev. 2009;89:957–89.

    CAS  Google Scholar 

  100. Martin ND, Schaner PJ, Tulenko TN, Shapiro IM, DiMatteo CA, Williams TK, et al. In vivo behavior of decellularized vein Allograft1, 2. J Surg Res. 2005;129(1):17–23.

  101. Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg. 2004;40(1):146–53.

  102. Amensag S, Goldberg LA, O’Malley KA, Rush DS, Berceli SA, McFetridge PS. Pilot assessment of a human extracellular matrix-based vascular graft in a rabbit model. J Vasc Surg. 2017;65(3):839–47.

    Google Scholar 

  103. Negishi J, Hashimoto Y, Yamashita A, Zhang Y, Kimura T, Kishida A, et al. Evaluation of small-diameter vascular grafts reconstructed from decellularized aorta sheets. J Biomed Mater Res A. 2017;105(5):1293–8.

  104. Sugimura Y, Schmidt AK, Lichtenberg A, Assmann A, Akhyari P. A rat model for the in vivo assessment of biological and tissue-engineered valvular and vascular grafts. Tissue Engineering Part C: Methods. 2017;23(12):982–94.

    Google Scholar 

  105. Kajbafzadeh AM, Khorramirouz R, Kameli SM, Fendereski K, Daryabari SS, Tavangar SM, et al. Three-year efficacy and patency follow-up of decellularized human internal mammary artery as a novel vascular graft in animal models. J Thorac Cardiovasc Surg. 2019;157(4):1494–502.

  106. Zhou M, Liu Z, Liu C, Jiang X, Wei Z, Qiao W, et al. Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds. J Biomed Mater Res B Appl Biomater. 2012;100(1):111–20.

  107. Kang J, Lee BW, Kim JH, Yoo DG, Cho WC, Kim SW, et al. Granulocyte colony-stimulating factor minimizes negative remodeling of decellularized small diameter vascular graft conduits but not medial degeneration. Ann Vasc Surg. 2013;27(4):487–96.

  108. Heidenhain C, Veeravoorn A, Vachkov B, Weichert W, Schmidmaier G, Wildemann B, Neuhaus P, Heise M. Fibroblast and vascular endothelial growth factor coating of decellularized vascular grafts stimulates undesired giant cells and graft encapsulation in a rat model. Artif Organs 2011;35(1):E1–0, E10.

  109. Iijima M, Aubin H, Steinbrink M, Schiffer F, Assmann A, Weisel RD, et al. Bioactive coating of decellularized vascular grafts with a temperature-sensitive VEGF-conjugated hydrogel accelerates autologous endothelialization in vivo. J Tissue Eng Regen Med. 2018;12(1):e513–22.

  110. Lee JS, Lee K, Moon SH, Chung HM, Lee JH, Um SH, Kim DI, Cho SW. Mussel-inspired cell-adhesion peptide modification for enhanced endothelialization of decellularized blood vessels. Macromolecular bioscience. ;14(8):1181–9.

  111. Mahara A, Somekawa S, Kobayashi N, Hirano Y, Kimura Y, Fujisato T, Yamaoka T. Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity. Biomaterials.;58:54–62.

  112. Chiesa R, Marone EM, Tshomba Y, Logaldo D, Castellano R, Melissano G. Aortobifemoral bypass grafting using expanded polytetrafluoroethylene stretch grafts in patients with occlusive atherosclerotic disease. Ann Vasc Surg. 2009;23(6):764–9.

    Google Scholar 

  113. Klinkert P, Post PN, Breslau PJ, Van Bockel JH. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg. 2004;27(4):357–62.

    CAS  Google Scholar 

  114. Brothers TE, Stanley JC, Burkel WE, Graham LM. Small-caliber polyurethane and polytetrafluoroethylene grafts: a comparative study in a canine aortoiliac model. J Biomed Mater Res. 1990;24(6):761–71.

    CAS  Google Scholar 

  115. Seifalian AM, Salacinski HJ, Tiwari A, Edwards A, Bowald S, Hamilton G. In vivo biostability of a poly (carbonate-urea) urethane graft. Biomaterials. 2003 1;24(14):2549–57.

  116. Okoshi T, Soldani G, Goddard M, Galletti PM, Karlson KE. Very small-diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1993;105(5):791–5.

    CAS  Google Scholar 

  117. Devine C, McCollum C, Trial TN. Heparin-bonded Dacron or polytetrafluorethylene for femoropopliteal bypass: five-year results of a prospective randomized multicenter clinical trial. J Vasc Surg. 2004;40(5):924–31.

    Google Scholar 

  118. Yarin AL. Coaxial electrospinning and emulsion electrospinning of core–shell fibers. Polym Adv Technol. 2011;22:310–7.

    CAS  Google Scholar 

  119. Yang G, Li XL, He Y, Ma JK, Ni GL, Zhou SB. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog Polym Sci2018; 81: 80–113.

  120. Wu J, Wang N, Zhao Y, Jiang L. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J Mater ChemA. 2013;1:7290–305.

    CAS  Google Scholar 

  121. Kidoaki S, Kwon IK, Matsuda T. Mesoscopic spatial designs of nano-and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials. 2005;26:37–46.

    CAS  Google Scholar 

  122. Zhang D, Chang J. Electrospinning of three-dimensional nanofibrous tubes with controllable architectures. Nano Lett2008; 8: 3283–3287.

  123. Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25:877–86.

    CAS  Google Scholar 

  124. Khalili S, Khorasani SN, Razavi SM, Hashemibeni B, Tamayol A. Nanofibrous scaffolds with biomimetic composition for skin regeneration. Appl Biochem Biotechnol. 2019;187(4):1193–203.

    CAS  Google Scholar 

  125. Qiu X, Lee BL, Ning X, Murthy N, Dong N, Li S. End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft. Acta Biomater. 2017;51:138–47.

    CAS  Google Scholar 

  126. Choi WS, Joung YK, Lee Y, Bae JW, Park HK, Park YH, et al. Enhanced patency and endothelialization of small-caliber vascular grafts fabricated by coimmobilization of heparin and cell-adhesive peptides. ACS Appl Mater Interfaces. 2016;8(7):4336–46.

  127. Filipe EC, Santos M, Hung J, Lee BS, Yang N, Chan AH, et al. Rapid endothelialization of off-the-shelf small diameter silk vascular grafts. JACC: Basic to Translational Science. 2018;3(1):38–53.

  128. Cattaneo I, Figliuzzi M, Azzollini N, Catto V, Farè S, Tanzi MC, et al. In vivo regeneration of elastic lamina on fibroin biodegradable vascular scaffold. The International journal of artificial organs. 2013;36(3):166–74.

  129. Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K, et al. The effect of thick fibers and large pores of electrospun poly (ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials. 2014;35(22):5700–10.

  130. He W, Ma Z, Teo WE, Dong YX, Robless PA, Lim TC, et al. Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2009;90(1):205–16.

  131. Fukunishi T, Best CA, Sugiura T, Opfermann J, Ong CS, Shinoka T, et al. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. J Thorac Cardiovasc Surg. 2017;153(4):924–32.

  132. Zhou M, Qiao W, Liu Z, Shang T, Qiao T, Mao C, et al. Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial cells and electrospun chitosan/poly (ɛ-caprolactone) nanofibrous scaffolds. Tissue Eng A. 2014;20(1–2):79–91.

  133. Wu T, Jiang B, Wang Y, Yin A, Huang C, Wang S, et al. Electrospun poly (l-lactide-co-caprolactone)–collagen–chitosan vascular graft in a canine femoral artery model. J Mater Chem B. 2015;3(28):5760–8.

  134. Ju YM, Ahn H, Arenas-Herrera J, Kim C, Abolbashari M, Atala A, Yoo JJ, Lee SJ. Electrospun vascular scaffold for cellularized small diameter blood vessels: a preclinical large animal study.ActaBiomater 2017; 59: 58–67.

  135. Wang K, Zheng W, Pan Y, Ma S, Guan Y, Liu R, et al. Three-layered PCL grafts promoted vascular regeneration in a rabbit carotid artery model. MacromolBiosci. 2016;16:608–18.

  136. Wise SG, Byrom MJ, Waterhouse A, Bannon PG, Weiss AS, Mk N. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater. 2011;7:295–303.

    CAS  Google Scholar 

  137. Wu T, Zhang J, Wang Y, Li D, Sun B, El-Hamshary H, et al. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mater Sci Eng C. 2018;82:121–9.

  138. Gong W, Lei D, Li S, Huang P, Qi Q, Sun Y, et al. Hybrid small-diameter vascular grafts: anti-expansion effect of electrospun poly ε-caprolactone on heparin-coated decellularized matrices. Biomaterials. 2016;76:359–70.

  139. Hu YT, Pan XD, Zheng J, Ma WG, Sun LZ. In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF. Int J Surg. 2017;44:244–9.

    Google Scholar 

  140. Ren XK, FengYK, Guo JT, H. X. Wang HX, Li Q, Yang J, Hao XF, Lv J, Ma N, Li WZ. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44: 5680, 5742.

  141. Washington KS, Bashur CA. Delivery of antioxidant and anti-inflammatory agents for tissue engineered vascular grafts. Front Pharmacol. 2017;8:659.

    Google Scholar 

  142. Liu K, Wang N, Wang WS, Shi LX, Li H, Guo FY, et al. A bio-inspired high strength three-layer nanofiber vascular graft with structure guided cell growth. J MaterChem B. 2017;5:3758–64.

  143. McClure MJ, Sell SA, Simpson DG, Walpoth BH, Bowlin GL. A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomater. 2010;6(7):2422–33.

    CAS  Google Scholar 

  144. Mi HY, Jing X, McNulty J, Salick MR, Peng XF, Turng LS. Approaches to fabricating multiple-layered vascular scaffolds using hybrid electrospinning and thermally induced phase separation methods. IndEngChem Res. 2016;55:882–92.

    CAS  Google Scholar 

  145. Ventola CL. Medical applications for 3D printing: current and projected uses. Pharmacy and Therapeutics. 2014;39(10):704–11.

    Google Scholar 

  146. Lee JY, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120–33.

    Google Scholar 

  147. Lee SJ, Heo DN, Park JS, Kwon SK, Lee JH, Lee JH, et al. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. PhysChemChem Phys. 2015;17:2996–9.

  148. Huang R, Gao X, Wang J, Chen H, Tong C, Tan Y, Tan Z. Triple-layer vascular grafts fabricated by combined E-Jet 3D printing and electrospinning. Annals of biomedical engineering. 2018 15;46(9):1254–66.

  149. Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013;31(1):10–9.

    CAS  Google Scholar 

  150. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    CAS  Google Scholar 

  151. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des. 2015;69:65–89.

  152. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B. 2018;143:172–96.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Tolba.

Ethics declarations

Conflict of Interest

The authors declare that they no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolba, E. Diversity of Electrospinning Approach for Vascular Implants: Multilayered Tubular Scaffolds. Regen. Eng. Transl. Med. 6, 383–397 (2020). https://doi.org/10.1007/s40883-020-00157-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-020-00157-z

Keywords

Navigation