Skip to main content
Log in

Curvatures of homogeneous sub-Riemannian manifolds

  • Review Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

The author proved in the late 1980s that any homogeneous manifold with an intrinsic metric is isometric to some homogeneous quotient space of a connected Lie group by its compact subgroup with an invariant Finslerian or sub-Finslerian metric. In the case of a trivial compact subgroup, the invariant Riemannian or sub-Riemannian metrics are singled out from invariant Finslerian or sub-Finslerian metrics by being in one-to-one correspondence with special one-parameter Gaussian convolutions semigroups of absolutely continuous probability measures. Any such semigroup is generated by a second order hypoelliptic operator. In the present paper, in connection with this, the author discusses briefly the operator definition of lower bound for Ricci curvature by Baudoin–Garofalo. Earlier, Agrachev defined a notion of curvature for sub-Riemannian manifolds. As an alternative, the author discusses in some detail old definitions of curvature tensors for rigged metrized distributions on manifolds given by Schouten, Wagner, and Solov’ev. To calculate the Solov’ev sectional and Ricci curvatures for homogeneous sub-Riemannian manifolds, the author suggests to use in some cases special riggings of invariant bracket generating distributions on manifolds. As a justification, we find a foliation on the cotangent bundle over a Lie group G whose leaves are tangent to invariant Hamiltonian vector fields for the Pontryagin–Hamilton function. This function was applied in the Pontryagin maximum principle for the time-optimal problem. The foliation is entirely described by the coadjoint representation of the Lie group G. We also use the canonical symplectic form on and its values for the above mentioned invariant Hamiltonian vector fields. In particular, the above rigging method is applicable to contact sub-Riemannian manifolds, sub-Riemannian Carnot groups, and homogeneous sub-Riemannian manifolds possessing a submetry onto a Riemannian manifold. In Sects. 5 and 6, some examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Barilari, D., Rizzi, L.: Sub-Riemannian curvature in contact geometry. J. Geom. Anal. 27(1), 366–408 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrachev, A., Barilari, D., Rizzi, L.: The Curvature: a Variational Approach. Memoirs of the American Mathematical Society (to appear). arXiv:1306.5318

  3. Agrachev, A., Lee, P.W.Y.: Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds. Math. Ann. 360(1–2), 209–253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, D.I., Remsing, C.C: On the Schouten and Wagner curvature tensors (submitted to SIGMA)

  5. Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. Eur. Math. Soc. (JEMS) 19(1), 151–219 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestovskii, V.N.: Homogeneous manifolds with intrinsic metric. I. Siberian Math. J. 29(6), 887–897 (1988)

    Article  MathSciNet  Google Scholar 

  7. Berestovskii, V.N.: Homogeneous spaces with an intrinsic metric. Soviet Math. Dokl. 38(1), 60–63 (1989)

    MathSciNet  Google Scholar 

  8. Berestovskii, V.N.: The structure of locally compact homogeneous spaces with an intrinsic metric. Siberian Math. J. 30(1), 16–25 (1989)

    Article  MathSciNet  Google Scholar 

  9. Berestovskii, V.N.: Homogeneous manifolds with an intrinsic metric. II. Siberian Math. J. 30(2), 180–191 (1989)

    Article  MathSciNet  Google Scholar 

  10. Berestovskii, V.N.: Geodesics of nonholonomic left-invariant intrinsic metrics on the Heisenberg group and isoperimetric curves on the Minkowski plane. Siberian Math. J. 35(1), 1–8 (1994)

    Article  MathSciNet  Google Scholar 

  11. Berestovskii, V.N.: Universal methods of the search of normal geodesics on Lie groups with left-invariant sub-Riemannian metric. Siberian Math. J. 55(5), 783–791 (2014)

    Article  MathSciNet  Google Scholar 

  12. Berestovskii, V.N., Guijarro, L.: A metric characterization of Riemannian submersions. Ann. Glob. Anal. Geom. 18(6), 577–588 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berestovskii, V.N., Nikonorov, Yu.G.: Riemannian Manifolds and Homogeneous Geodesics. Progress in Science. South Russia. Mathematical Monograph, vol. 4. Vladikavkaz: SMI VSC RAS (in Russian) (2012)

  14. Berestovskii, V.N., Nikonorov, Yu.G.: Generalized normal homogeneous Riemannian metrics on spheres and projective spaces. Ann. Glob. Anal. Geom. 45(3), 167–196 (2014)

  15. Berestovskii, V., Plaut, C.: Homogeneous spaces of curvature bounded below. J. Geom. Anal. 9(2), 203–219 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Besse, A.L.: Manifolds All of Whose Geodesics are Closed. Results in Mathematics and Related Areas, vol. 93. Springer, Berlin (1978)

    Book  Google Scholar 

  17. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, vol. 203, 2nd edn. Birkhäuser, Boston (2010)

    Book  MATH  Google Scholar 

  18. Gorbatenko, E.M.: Differential geometry of nonholonomic manifolds (by V.V. Wagner). Geometricheskij Sbornik (TGU) 26, 18–34 (1985) (in Russian)

  19. Heyer, H.: Probability Measures on Locally Compact Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 94. Springer, Berlin (1977)

    Book  Google Scholar 

  20. Hörmander, L.: The Analysis of Linear Partial Differential Operators. III. Classics in Mathematics. Springer, Berlin (1985)

    MATH  Google Scholar 

  21. Juillet, N.: Geometric inequalities and generalized Ricci bounds in the Heisenberg group. Int. Math. Res. Not. IMRN 2009(13), 2347–2373 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Kirillov, A.A.: Elements of the Theory of Representations. Grundlehren der Mathematischen Wissenschaften, vol. 220. Springer, Berlin (1976)

    Google Scholar 

  23. Kirillov, A.A.: Lectures on the Orbit Method. Graduate Studies in Mathematics, vol. 64. American Mathematical Society, Providence (2004)

    Google Scholar 

  24. Liu, W., Sussman, H.J.: Shortest Paths for Sub-Riemannian Metrics on Rank-Two Distributions. Memoirs of the American Mathematical Society, vol. 118(564). American Mathematical Society, Providence (1995)

  25. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Noskov, G.A.: Geodesics in the Heisenberg group: an elementary approach. Sib. Electron. Mat. Izv. 5, 177–188 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Fuct. Anal. 256(3), 810–864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. O’Neill, B.: The fundamental equations of a submersion. Michigan Math. J. 13(4), 459–469 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    Google Scholar 

  30. Schouten, J.A., van Kampen, E.R.: Zur Einbettungs- und Krümmungstheorie nichtholonomer Gebilde. Math. Ann. 103, 752–783 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  31. Siebert, E.: Absolute continuity, singularity, and supports of Gauss semigroups on a Lie group. Monatsch. Math. 93(3), 239–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Siebert, E.: Densities and differentiability properties of Gauss semigroups on a Lie group. Proc. Amer. Math. Soc. 91(2), 298–305 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Solov’ev, A.F.: Bending of hyperdistributions. Geometricheskij Sbornik (TGU) 20, 101–112 (1979) (in Russian)

  34. Solov’ev, A.F.: Second fundamental form of a distribution. Math. Notes 31(1), 71–75 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Solov’ev, A.F.: Curvature of a distribution. Math. Notes 35(1), 61–68 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Solov’ev, A.F.: Curvature of a hyperdistributions and contact metric manifolds. Math. Notes 38(3), 756–762 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sternberg, S.: Lectures on Differential Geometry. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  38. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wagner, V.V.: Differential Geometry of Nonholonomic Manifolds. VIIIth Internat. Competition on Searching N.I. Lobachevsky prize (1937). Report. Kazan, pp. 195–262 (1939) (in Russian)

  41. Ziller, W.: Homogeneous Einstein metrics on spheres and projective spaces. Math. Ann. 259(3), 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii N. Berestovskii.

Additional information

The publication was supported by the Ministry of Education and Science of the Russian Federation (Project Number 1.8126.2017/8.9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berestovskii, V.N. Curvatures of homogeneous sub-Riemannian manifolds. European Journal of Mathematics 3, 788–807 (2017). https://doi.org/10.1007/s40879-017-0171-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-017-0171-3

Keywords

Mathematics Subject Classification

Navigation