Skip to main content
Log in

Compressible Navier–Stokes–Fourier flows at steady-state

  • Original Article
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The heat conducting compressible viscous flows are governed by the Navier–Stokes–Fourier (NSF) system. In this paper, we study the NSF system accomplished by the Newton law of cooling for the heat transfer at the boundary. On one part of the boundary, we consider the Navier slip boundary condition, while in the remaining part the inlet and outlet occur. These boundary effects are the unique sink/source to the problem under study, and others effects such as the gravity and dissipation are neglected. The existence of a weak solution is proved via a new fixed point argument. With this new approach, the weak solvability is possible in Lipschitz domains, by making recourse to \(L^q\)-Neumann problems with \(q>n\). Thus, standard existence results can be applied to auxiliary problems and the claim follows by compactness techniques. Quantitative estimates are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amrouche, C., Seloula, N.: \(L^p-\)theory for vector potentials and Sobolev's inequalities for vector fields. Application to the Stokes equations with pressure boundary conditions. Math. Mod. Methods Appl. Sci. 23, 37–92 (2013)

    Article  Google Scholar 

  2. Beirão da Veiga, H.: Existence results in Sobolev spaces for a stationary transport equation. Ric. Mat. 36, 173–184 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Březina, J., Novotný, A.: On weak solutions of steady Navier–Stokes equations for monatomic gas. Comment. Math. Univ. Carolin. 49(4), 611–632 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Chung, S.R., Suh, C.H., Baek, J.H., Park, H.S., Choi, Y.J., Lee, J.H.: Safety of radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: a systematic review and meta-analysis. Int. J. Hyperthermia 33(8), 920–930 (2017)

    Google Scholar 

  5. Consiglieri, L.: Steady-state flows of thermal viscous incompressible fluids with convective-radiation effects. Math. Mod. Methods Appl. Sci. 16(12), 2013–2027 (2006)

    Article  MathSciNet  Google Scholar 

  6. Consiglieri, L.: Explicit estimates for solutions of mixed elliptic problems. Int. J. Partial Differ. Equ. 2014, 845760 (2014). https://doi.org/10.1155/2014/845760

    Article  MATH  Google Scholar 

  7. Consiglieri, L.: Mathematical Analysis of Selected Problems from Fluid Thermomechanics. The \((p-q)\) Coupled Fluid-energy Systems. Lambert Academic Publishing, Saarbrücken (2011)

    Google Scholar 

  8. Dong, H.: On elliptic equations in a half space or in convex wedges with irregular coefficients. Adv. Math. 238, 24–49 (2013)

    Article  MathSciNet  Google Scholar 

  9. Ducomet, B., Nečasová, S., Vasseur, A.: On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas. J. Math. Fluid Mech. 13, 191–211 (2011)

    Article  MathSciNet  Google Scholar 

  10. Dunford, N., Schwartz, J.T.: Linear Operators, Part I. Interscience Publishers, New York (1958)

    MATH  Google Scholar 

  11. Fabes, E., Jodeit, M., Jr., Riviére, N.: Potential techniques for boundary value problems on \(C^1\) domains. Acta Math. 141, 165–186 (1978)

    Article  MathSciNet  Google Scholar 

  12. Frehse, J., Steinhauer, M., Weigant, W.: The Dirichlet problem for steady viscous compressible flow in three dimensions. J. Math. Pures Appl. 97, 85–97 (2012)

    Article  MathSciNet  Google Scholar 

  13. Frolov, N.N.: Boundary value problem describing the motion of an inhomogeneous fluid. Sib. Math. J. 37(2), 376–393 (1996). Translated from Sibirsk. Mat. Zh. 37(2), 433–451 (1996)

  14. Galdi, G.P., Simader, C.G.: Existence, uniqueness and \(L^q\) -estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112, 291–318 (1990)

    Article  Google Scholar 

  15. Geng, J., Shen, Z.: The \(L^p\) boundary value problems on Lipschitz domains. Adv. Math. 216, 212–254 (2007)

    Article  MathSciNet  Google Scholar 

  16. Geng, J., Shen, Z.: The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal. 259, 2147–2164 (2010)

    Article  MathSciNet  Google Scholar 

  17. Gu, Z., Ubachs, W.: A systematic study of Rayleigh-Brillouin scattering in air, N2, and O2 gases. J. Chem. Phys. 141(10), 104320 (2014)

    Article  Google Scholar 

  18. Gunzburger, M.D., Imanuvilov, O.Y.: Optimal control of stationary, low Mach number, highly nonisothermal, viscous flows. ESAIM Control Optim. Calc. Var. 5, 477–500 (2000)

    Article  MathSciNet  Google Scholar 

  19. Hoff, D.: Compressible flow in a half-space with Navier boundary conditions. J. Math. Fluid Mech. 7(3), 315–338 (2005)

    Article  MathSciNet  Google Scholar 

  20. Laesecke, A., Krauss, R., Stephan, K., Wagner, W.: Transport properties of fluid oxygen. J. Phys. Chem. Ref. Data 19(5), 1089–1122 (1990)

    Article  Google Scholar 

  21. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod et Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  22. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Compressible models. Lecture series in mathematics and its applications, vol. 2. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  23. Kadoya, K., Matsunaga, N., Nagashima, A.: Viscosity and thermal conductivity of dry air in the gaseous phase. J. Phys. Chem. Ref. Data 14(4), 947–969 (1985)

    Article  Google Scholar 

  24. Mitrea, D.: Sharp \(L^p-\)Hodge decompositions for Lipschitz domains in \({\mathbb{R}}^2\). Adv. Differ. Equ. 7(3), 343–364 (2002)

    MATH  Google Scholar 

  25. Mucha, P.B., Pokorný, M.: Weak solutions to equations of steady compressible heat conducting fluids. Math. Mod. Methods Appl. Sci. 20(5), 785–813 (2010)

    Article  MathSciNet  Google Scholar 

  26. Padula, M.-R.: Uniqueness theorems for steady, compressible, heat-conducting fluids: bounded domains. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) 74(6), 380–387 (1983)

    MathSciNet  MATH  Google Scholar 

  27. Plotnikov, P.I., Ruban, E.V., Sokolowski, J.: Inhomogeneous boundary value problems for compressible Navier–Stokes and transport equations. J. Math. Pures Appl. 92(2), 113–162 (2009)

    Article  MathSciNet  Google Scholar 

  28. Plotnikov, P.I., Weigant, W.: Steady 3D viscous compressible flows with adiabatic exponent \(\gamma \in (1,\infty )\). J. Math. Pures Appl. 104, 58–82 (2015)

    Article  MathSciNet  Google Scholar 

  29. Radzina, M., Cantisani, V., Rauda, M., Nielsen, M.B., Ewertsen, C., D'Ambrosio, F., Prieditis, P., Sorrenti, S.: Update on the role of ultrasound guided radiofrequency ablation for thyroid nodule treatment. Int. J. Surg. 41, 582–593 (2017)

    Article  Google Scholar 

  30. Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin (1990)

    Book  Google Scholar 

  31. Valli, A.: On the existence of stationary solutions to compressible Navier–Stokes equations. Ann. Inst. Henri Poincaré 4(1), 99–113 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I express my sincere gratitude to the anonymous referee for many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Consiglieri.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by Claudio Gorodski.

Dedicated to my coauthor and beloved father Victor Consiglieri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Consiglieri, L. Compressible Navier–Stokes–Fourier flows at steady-state. São Paulo J. Math. Sci. 15, 812–838 (2021). https://doi.org/10.1007/s40863-021-00262-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-021-00262-z

Keywords

Mathematics Subject Classification

Navigation