Skip to main content
Log in

Error Estimates of Finite Element Method for the Incompressible Ferrohydrodynamics Equations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, we consider the Shliomis ferrofluid model and study its numerical approximation. We investigate a first-order energy-stable fully discrete finite element scheme for solving the simplified ferrohydrodynamics (SFHD) equations. First, we establish the well-posedness and some regularity results for the solution of the SFHD model. Next we study the Euler semi-implicit time-discrete scheme for the SFHD systems and derive the \({\varvec{L}}^2 \text -{\varvec{H}}^1\) error estimates for the time-discrete solution. Moreover, certain regularity results for the time-discrete solution are proved rigorously. With the help of these regularity results, we prove the unconditional \({\varvec{L}}^2 \text -{\varvec{H}}^1\) error estimates for the finite element solution of the SFHD model. Finally, some three-dimensional numerical examples are carried out to demonstrate both the accuracy and efficiency of the fully discrete finite element scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Abboud, H., Girault, V., Sayah, T.: A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme. Numer. Math. 114(2), 189–231 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ait Ou Ammi, A., Marion, M.: Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations. Numer. Math. 68(2), 189–213 (1994)

    Article  MathSciNet  Google Scholar 

  3. Amirat, Y., Hamdache, K.: Global weak solutions to a ferrofluid flow model. Math. Methods Appl. Sci. 31(2), 123–151 (2008)

    Article  MathSciNet  Google Scholar 

  4. Amirat, Y., Hamdache, K.: Strong solutions to the equations of a ferrofluid flow model. J. Math. Anal. Appl. 353(1), 271–294 (2009)

    Article  MathSciNet  Google Scholar 

  5. Amirat, Y., Hamdache, K.: Unique solvability of equations of motion for ferrofluids. Nonlinear Anal. 73(2), 471–494 (2010)

    Article  MathSciNet  Google Scholar 

  6. Amirat, Y., Hamdache, K., Murat, F.: Global weak solutions to equations of motion for magnetic fluids. J. Math. Fluid Mech. 10(3), 326–351 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bao, Y., Pakhomov, A.B., Krishnan, K.M.: Brownian magnetic relaxation of water-based cobalt nanoparticle ferrofluids. J. Appl. Phys. 99(8), 08–107 (2006)

    Article  Google Scholar 

  8. Behrens, S., Bönnemann, H., Modrow, H., Kempter, V., Riehemann, W., Wiedenmann, A., Odenbach, S., Will, S., Thrams, L., Hergt, R., Müller, R., Landfester, K., Schmidt, A., Schüler, D., Hempelmann, R.: Synthesis and characterization. Coll. Magn. Fluids Basics Dev. Appl. Ferrofluids 763, 1 (2009)

    Article  Google Scholar 

  9. Castellanos, A.: Electrohydrodynamics. Springer, New York (1998)

  10. Chen, W., Wang, S., Zhang, Y., Han, D., Wang, C., Wang, X.: Error estimate of a decoupled numerical scheme for the Cahn-Hilliard-Stokes-Darcy system. IMA J. Numer. Anal. 42(3), 2621–2655 (2022)

    Article  MathSciNet  Google Scholar 

  11. Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system. Numer. Math. 137(3), 495–534 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ding, Q., He, X., Long, X., Mao, S.: Error analysis of a fully discrete projection method for magnetohydrodynamic system. Numer. Methods Partial Differential Equations 39(2), 1449–1477 (2023)

    Article  MathSciNet  Google Scholar 

  13. Gao, H.: Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation. SIAM J. Numer. Anal. 52(5), 2574–2593 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gaspari, G.D.: Bloch equation for conduction-electron spin resonance. Phys. Rev. 151, 215–219 (1966)

    Article  Google Scholar 

  15. Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006)

    Google Scholar 

  16. Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. In: Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

    Google Scholar 

  17. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44/45/46/47), 6011–6045 (2006)

    Article  MathSciNet  Google Scholar 

  18. He, Y.: A fully discrete stabilized finite-element method for the time-dependent Navier-Stokes problem. IMA J. Numer. Anal. 23(4), 665–691 (2003)

    Article  MathSciNet  Google Scholar 

  19. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35(2), 767–801 (2015)

    Article  MathSciNet  Google Scholar 

  20. Heister, T., Mohebujjaman, M., Rebholz, L.G.: Decoupled, unconditionally stable, higher order discretizations for MHD flow simulation. J. Sci. Comput. 71(1), 21–43 (2017)

    Article  MathSciNet  Google Scholar 

  21. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    Article  MathSciNet  Google Scholar 

  22. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  23. Hill, A.T., Süli, E.: Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal. 20(4), 633–667 (2000)

    Article  MathSciNet  Google Scholar 

  24. Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28(04), 659–695 (2018)

    Article  MathSciNet  Google Scholar 

  25. Labovsky, A., Layton, W.J., Manica, C.C., Neda, M., Rebholz, L.G.: The stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 198(9/10/11/12), 958–974 (2009)

    Article  MathSciNet  Google Scholar 

  26. Latorre-Esteves, M., Rinaldi, C.: Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. P. R. Health Sci. J. 28, 227 (2009)

    Google Scholar 

  27. Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V., Tobiska, L.: Numerical treatment of free surface problems in ferrohydrodynamics. J. Phys.: Condens. Matter 18, 2657–2669 (2006)

    Google Scholar 

  28. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10(3), 622–633 (2013)

    MathSciNet  Google Scholar 

  29. Mao, S., Sun, J., Xue, W.: Unconditional convergence and error estimates of a fully discrete finite element method for the micropolar Navier-Stokes equations. J. Comput. Math. 42(1),71–110 (2024)

    Article  MathSciNet  Google Scholar 

  30. Miwa, M., Harita, H., Nishigami, T., Kaneko, R., Unozawa, H.: Frequency characteristics of stiffness and damping effect of a ferrofluid bearing. Tribol. Lett. 15, 97–105 (2003)

    Article  Google Scholar 

  31. Neuringer, J.L., Rosensweig, R.E.: Ferrohydrodynamics. Phys. Fluids 7, 1927–1937 (1964)

    Article  MathSciNet  Google Scholar 

  32. Nochetto, R.H., Salgado, A.J., Tomas, I.: The equations of ferrohydrodynamics: modeling and numerical methods. Math. Models Methods Appl. Sci. 26(13), 2393–2449 (2016)

    Article  MathSciNet  Google Scholar 

  33. Nochetto, R.H., Salgado, A.J., Tomas, I.: A diffuse interface model for two-phase ferrofluid flows. Comput. Methods Appl. Mech. Engrg. 309, 497–531 (2016)

    Article  MathSciNet  Google Scholar 

  34. Nochetto, R.H., Trivisa, K., Weber, F.: On the dynamics of ferrofluids: global weak solutions to the Rosensweig system and rigorous convergence to equilibrium. SIAM J. Math. Anal. 51(6), 4245–4286 (2019)

    Article  MathSciNet  Google Scholar 

  35. Odenbach, S.: Recent progress in magnetic fluid research. J. Phys.: Condens. Matter 16, 1135–1150 (2004)

    Google Scholar 

  36. Pankhurst, Q., Connolly, J., Jones, S., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, 1 (2003)

    Article  Google Scholar 

  37. Raj, K., Moskowitz, B., Casciari, R.: Advances in ferrofluid technology. J. Magn. Magn. Mater. 149, 174–180 (1995)

    Article  Google Scholar 

  38. Rannacher, R.: On Chorin’s projection method for the incompressible Navier-Stokes equations. In: The Navier-Stokes Equations II—Theory and Numerical Methods (Oberwolfach, 1991), vol. 1530, pp. 167–183. Springer, Berlin (1992)

  39. Rinaldi, C., Zahn, M.: Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields. Phys. Fluids 14, 2847–2870 (2002)

    Article  Google Scholar 

  40. Rosensweig, R.E.: Ferrohydrodynamics. Mineola, New York (1985)

    Google Scholar 

  41. Rosensweig, R.E.: Magnetic fluids. Annu. Rev. Fluid Mech. 19, 437–463 (1987)

    Article  Google Scholar 

  42. Sarwar, A., Lee, R., Depireux, D., Shapiro, B.: Magnetic injection of nanoparticles into rat inner ears at a human head working distance. IEEE Trans. Magn. 49, 440–452 (2013)

    Article  Google Scholar 

  43. Shen, J.: On error estimates of projection methods for Navier-Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)

    Article  MathSciNet  Google Scholar 

  44. Shliomis, M.I.: Effective viscosity of magnetic suspensions. Sov. J. Exp. Theor. Phys. 34, 1291–1294 (1972)

    Google Scholar 

  45. Shliomis, M.I.: Ferrohydrodynamics: retrospective and issues. In: Odenbach, S. (ed.) Ferrofluids: Magnetically Controllable Fluids and Their Applications. pp. 85–111. Springer, Berlin (2002)

    Chapter  Google Scholar 

  46. Sunil, C.P., Bharti, P.K.: Double-diffusive convection in a micropolar ferromagnetic fluid. Appl. Math. Comput. 189(2), 1648–1661 (2007)

    MathSciNet  Google Scholar 

  47. Temam, R.: Navier-Stokes equations: theory and numerical analysis. In: Studies in Mathematics and Its Applications, vol. 2, 3rd edn. North-Holland, Amsterdam (1984)

    Google Scholar 

  48. Thomée, V.: Galerkin finite element methods for parabolic problems. In: Springer Series in Computational Mathematics, vol. 25, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  49. Torrey, H.C.: Bloch equations with diffusion terms. Phys. Rev. 104, 563–565 (1956)

    Article  Google Scholar 

  50. Wang, C., Wang, J., Xia, Z., Xu, L.: Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations. ESAIM: M2AN 56(3), 767–789 (2022)

    Article  MathSciNet  Google Scholar 

  51. Wu, Y., Xie, X.: Mixed finite element methods for the ferrofluid model with magnetization paralleled to the magnetic field. Numer. Math. Theory Methods Appl. 16(2), 489–510 (2023)

    Article  MathSciNet  Google Scholar 

  52. Wu, Y., Xie, X.: Energy-stable mixed finite element methods for a ferrofluid flow model. Commun. Nonlinear Sci. Numer. Simul. 125, 107330 (2023)

    Article  MathSciNet  Google Scholar 

  53. Yang, J., Mao, S.: Second order fully decoupled and unconditionally energy-stable finite element algorithm for the incompressible MHD equations. Appl. Math. Lett. 121, 107467 (2021)

    Article  MathSciNet  Google Scholar 

  54. Zahn, M., Greer, D.: Ferrohydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields. J. Magn. Magn. Mater. 149, 165–173 (1995)

    Article  Google Scholar 

  55. Zhang, G.-D., He, X., Yang, X.: Decoupled, linear, and unconditionally energy stable fully discrete finite element numerical scheme for a two-phase ferrohydrodynamics model. SIAM J. Sci. Comput. 43(1), 167–193 (2021)

    Article  MathSciNet  Google Scholar 

  56. Zhang, L.-B.: A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numer. Math. Theory Methods Appl. 2(1), 65–89 (2009)

    MathSciNet  Google Scholar 

  57. Zhang, L.-B., Cui, T., Liu, H.: A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 27(1), 89–96 (2009)

    MathSciNet  Google Scholar 

  58. Zhang, Y., Hou, Y., Shan, L.: Numerical analysis of the Crank-Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows. Numer. Methods Partial Differential Equations 31(6), 2169–2208 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 12271514, 11871467, 12161141017) and the National Key Research and Development Program of China (2023YFC3705701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shipeng Mao.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, S., Sun, J. Error Estimates of Finite Element Method for the Incompressible Ferrohydrodynamics Equations. Commun. Appl. Math. Comput. (2024). https://doi.org/10.1007/s42967-023-00347-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-023-00347-w

Keywords

Mathematics Subject Classification

Navigation