Skip to main content
Log in

Important chromosomal regions for genetic control of powdery mildew resistance under control, drought, and saline conditions in barley (Hordeum vulgare L.)

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Powdery mildew, caused by Blumeria graminis f. sp. hordei, is one of the most important fungal diseases in barley. In the current study 106, RIL lines derived from a cross between Badia and Kavir were utilized in order to identify and validate quantitative trait loci (QTLs) associated with the powdery mildew resistance at seedling and adult stages under control, drought, and saline conditions. First, the responses of the lines were evaluated at seedling stage, and in the following experiments, the responses of the adult lines to powdery mildew were assessed under control, drought, and saline conditions. A genetic map totaling 999.2 cM spans across 7 linkage groups. Our results demonstrated the importance of chromosome 2H in reducing the symptoms of the disease. qPm.SEVAD-7b and qPm.AUDPCAD-7 on chromosome 7H were involved in increasing the resistance against powdery mildew under drought condition. When the plant was exposed to saline stress, qPm.SEVAS-5 and qPm.SEVAS-3 explained a high percentage of disease resistance. The present study indicated that 135.8 to 136 and 125 to 136 cM from the distal end of short arm chromosome on chromosome 4H have very important roles in controlling the severity of the disease. Our results showed that GBM1164, CAAT4-A, GBM1450, and Scot4-E can be used in breeding programs to increase resistance to powdery mildew. This research can provide useful information to subsequent construction of fine mapping and marker-assisted selection breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are publicly available.

References

  • Aalami A, Safiyar S, Abdollahi Mandoulakani B (2012) R-RAP: a retrotransposon-based DNA fingerprinting technique in plants. Plant Omics 5:359–364

    CAS  Google Scholar 

  • Achuo EA, Prinsen E, Höfte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathology 55:178–186

    Article  CAS  Google Scholar 

  • Aghnoum R, Marcel T, Johrde A, Pecchioni N, Schweizer P, Niks R (2010) Basal host resistance of barley to powdery mildew: connecting quantitative trait Loci and candidate genes. Molecular Plant-Microbe Interactions 23:91–102

    Article  CAS  PubMed  Google Scholar 

  • Al-Sadi AM, Al-Masoudi RS, Al-Habsi N, Al-Said FA, Al-Rawahy SA, Ahmed M, Deadman ML (2010) Effect of salinity on pythium damping-off of cucumber and on the tolerance of Pythium aphanidermatum. Plant Pathology 59:112–120

    Article  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock GV (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics 25:25–29

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany 63:3523–3544

    Article  CAS  PubMed  Google Scholar 

  • Aym PG, Zadors JC (1979) Combined effects of powdery mildew disease and soil water level on the water relations and growth of barley. Physiological Plant Pathology 14:347–361

    Article  Google Scholar 

  • Ayres PG (1977) Effects of powdery mildew Erysiphe pisi and water stress upon the water relations of pea. Physiological Plant Pathology 10:139–145

    Article  Google Scholar 

  • Ayres P G (1979) CO2 exchanges in plants infected by obligately biotrophic pathogens. In Photosynthesis and Plant Development 343–354

  • Bai Y, Vander Hulst R, Bonnema G, Marcel TC, Meijer-Dekens F, Niks RE, Lindhout P (2005) Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. Molecular Plant-Microbe Interactions 18:354–362

    Article  CAS  PubMed  Google Scholar 

  • Bakhtiari S, Sabouri H, Mollashahi M, Hosseini Moghaddam H (2020) The Eff ect of Pesticide Application on QTLs Controlling Traits in Barley. Acta Biologica Szegediensis 64(1):63–71

  • Benoist C, Ohare K, Breathnach R, Chambon P (1980) The ovalbumin gene sequence of putative control regions. Nucleic Acids Research 8:127–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhullar NK, Zhang Z, Wicker T, Keller B (2010) Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biology 10:1–3

    Article  Google Scholar 

  • Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl Plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Plant Bioinformatics pp 115–140

  • Brook DH (1972) Observations on the effects of mildew Erysiphe graminis, on the growth of spring and winter barley. Annals of Applied Biology 70:149–156

    Article  Google Scholar 

  • Brown JKM (2015) Durable resistance of crops to disease: a Darwinian perspective. Annual Review of Phytopathology 53:513–539

    Article  CAS  PubMed  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. PubMed Unique Identifier 88(5):695–705

  • Chen WY, Liu ZM, Deng GB, Liang JJ, Pan ZF, Zeng XQ, Tashi NM, Long H, Yu MQ (2014) Genetic relationship between lodging and lodging components in barley (Hordeum vulgare) based on unconditional and conditional quantitative trait locus analyses. Genetics and Molecular Research 13(1):1909–1925

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology 27:86–93

    Article  CAS  Google Scholar 

  • Dreiseitl A (2011) Differences in powdery mildew epidemics in spring and winter barley based on 30-year variety trials. Annals of Applied Biology 159:49–57

    Article  Google Scholar 

  • Dreiseitl A (2014) Pathogenic divergence of Central European and Australian populations of Blumeria graminis f. sp. hordei. Annals of Applied Biology 165:364–372

    Article  Google Scholar 

  • Dreiseitl A (2019) Great pathotype diversity and reduced virulence complexity in a Central European population of Blumeria graminisf. sp. hordei in 2015–2017. European Journal ofPlant Pathology 153:801–811

    Article  CAS  Google Scholar 

  • Dreiseitl A (2020) A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. Scientific Reports 10:18930

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT. http://faostat.fao.org (Accessed 28 October 2018)

  • Gene Ontology Consortium (2021) The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Research 8 49:D325–D334

    Article  Google Scholar 

  • Ghaffari MS, Sabouri H, Gholizadeh A, Ali FH (2019) Identification of QTLs associated with some (Hordeum vulgare L.) traits in a germination stage under salt stress conditions. Iranian Journal of Plant Physiology 11(4):79–94

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theoretical and Applied Genetics 83:250–256

    Article  CAS  PubMed  Google Scholar 

  • Gripfiths E, Jones DG, Valentine M (1975) Effects of powdery mildew at different growth stages on grain yield of barley. Annals of Applied Biology 80:343–349

    Article  Google Scholar 

  • Gupta S, Vassos E, Sznajder B, Fox R, Khoo KHP, Loughman R, Chalmers K, Mather D (2018) A locus on barley chromosome 5H affects adult plant resistance to powdery mildew. Molecular Plant Breeding 38:103

    Article  Google Scholar 

  • Heun M (1992) Mapping quantitative powdery mildew resistance of barley using a restriction fragment length polymorphism map. Genome 35:1019–1025

    Article  CAS  Google Scholar 

  • Hussain S, Rengel Z, Mohammadi S, Ebadi-Segherloo A, Maqsood M (2016) Mapping QTL associated with remobilization of zinc from vegetative tissues into grains of barley (Hordeum vulgare). Plant Soil 399(1):193–208

  • Jafary H, Szabo L, Niks R (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Molecular Plant-Microbe Interactions 19:1270–1279

    Article  CAS  PubMed  Google Scholar 

  • Jarod A, Rollins B, Drosse M A, Mulki S, Grando M, Baum M, Singh S, Ceccarelli M, von Korff (2013) Variation at the vernalisation genes Vrn H1 and Vrn H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theoretical and Applied Genetics 126:2803–2824

  • Jørgensen JH, Wolfe M (1994) Genetics of powdery mildew resistance in barley. Critical Reviews in Plant Sciences 13:97–119

    Article  Google Scholar 

  • Kalendar R, Grob T, Regina M, Souniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics 98:704–711

    Article  CAS  Google Scholar 

  • Keller B, Krattinger SGA (2018) New player in race-specific resistance. Nature Plants 4:197–198

    Article  PubMed  Google Scholar 

  • Kissoudis C, Sunarti S, van deWiel C, Visser RG, van der Linden CG, BaiY, (2016) Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. Journal of Experimental Botany 67:5119–5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, HoVman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theoretical and Applied Genetics 86:705–712

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Annals of Eugenics 12:172–175

    Article  Google Scholar 

  • Kubo N, Hirai M, Kaneko A, Tanaka D, Kasumi K (2009) Development and characterization of simple sequence repeat (SSR) markers in the water lotus (Nelumbo nucifera). Aquatic Botany 90:191–194

    Article  CAS  Google Scholar 

  • Lai Y, Yu Y, Liu X, Wan H, Zhang Z, Wang L, Leng Y, Ma L, Yang W, Feng Z (2017) Association mapping of grain weight, length and width in barley (Hordeum vulgare) breeding germplasm. International Journal of Agriculture and Biology 19:1175‒1186

  • Lakew B, Henry RJ, Ceccarelli S, Grando S, Eglinton J, Baum M (2013) Genetic analysis and phenotypic associations for drought tolerance in Hordeum spontaneum introgression lines using SSR and SNP markers. Euphytica 189:9–29

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factor underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Last FT (1962) Analysis of the effects of Erysiphe graminis DC. on the Growth of Barley. Annuls of Botany 26:279–289

    Article  Google Scholar 

  • Li HB, Zhou MX (2011) Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations. Molecular Plant Breeding 27:479–490

    Article  Google Scholar 

  • Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theoretical and Applied Genetics 107:1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Maekawa T, Kracher B, Saur IM, Yoshikawa-Maekawa M, Kellner R, Pankin A, von Korff M, Schulze-Lefert P (2019) Subfamily-specific specialization of RGH1/MLA immune receptors in wild barley. Molecular Plant-Microbe Interactions 32:107–119

    Article  CAS  PubMed  Google Scholar 

  • Mains EB, Dietz SM (1930) Physiologic forms of Barley mildew, Erysiphe graminis hordei Marchal. Phytopathology 20:229–239

    Google Scholar 

  • Majernik O (1971) A physiological study of the effects of SO2, pollution, phenylmercuric acetate sprays, and parasites on stomatal behaviour and ageing in barley. Phytopathology 72:255–268

    Article  CAS  Google Scholar 

  • Makhtoum S, Sabouri H, Gholizadeh AL, Ahangar L, Katouzi M (2021) Quantitative genes controlling chlorophyll fluorescence attributes in barley (Hordeum vulgare L.). Journal of Genetic Resources 7:72–86

    Google Scholar 

  • Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics 114:487–500

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QTL. Mammalian Genome 10:327–334

    Article  CAS  PubMed  Google Scholar 

  • Mourad AMI, Alomari DZ, Alqudah AM, Sallam A, Salem KFM (2019) Recent advances in wheat (Triticum spp.) Breeding. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham

  • Murray GM, Brennan JP (2010) Estimating disease losses to the Australian barley industry. Australasian Plant Pathology 39:85–96

    Article  Google Scholar 

  • Mwando E, Angessa TT, Han Y, Zhou G, Li C (2021) Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress. Agronomy 11(1):103

  • Nelson J (1997) QGENE: software for marker–based analysis and breeding. Molecular Plant Breeding 3:239–245

    Article  CAS  Google Scholar 

  • Paulech C (1969) Influence of Erysipha graminis D.C. on the amount of dry substance and on the growth of vegetative organs. Biologia (Bratisl) 24:709–720

    Google Scholar 

  • Piechota U, Czembor PC, Słowacki P, Czembor JH (2019) Identifying a novel powdery mildew resistance gene in a barley landrace from Morocco. Journal of Applied Genetics 60:243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott JM, Saari EE (1975) A scale for appraising the foliar intensity of wheat disease. Plant Disease Reporter 59:377–380

    Google Scholar 

  • Priehradny S, Janitor A (1970) Influence of Erysiphe graminis DC on the water-retention capacity of barley depending on the development of the fungus. Biologia (Bratisl) 25: 427–438 https://www.cabdirect.org/cabdirect/abstract/19711100081

  • Priehradny S (1975) Response to fungus pathogen in susceptible and resistant barley varieties: I. Transpiration. Phytopathology 83:109–118

    Article  Google Scholar 

  • Qi X, Stam P, Lindhout P (1998) Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theoretical and Applied Genetics 96:376–384

    Article  CAS  PubMed  Google Scholar 

  • Queen RA, Gribbon BM, James C, Jack P, Falvell AJ (2004) Retrotransposon-based molecular marker for linkage and genetic diversity analysis in wheat. Molecular Genetics and Genomics 271:91–97

    Article  CAS  PubMed  Google Scholar 

  • Rahimi M, Ebrahimpour F, Eshghi R (2012) Inheritance and QTL Mapping of Agronomical Traits in Barley. Journal of Crop Biotechnology 2(3):35‒48

  • Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology 176:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich DS, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) and its application in plant breeding. Euphytica 128:9–17

    Article  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Functional Plant Biology 37:613–620

    Article  Google Scholar 

  • Richardson KL, Vales MI, Kling JG, Mundt CC, Hayes PM (2006) Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theoretical and Applied Genetics 113:485–495

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics 274:515–527

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Nankaku N, Motoi Y, Takeda K (2004) A large-scale mapping of ESTs on barley genome. In: Spunar J, Janikova J (eds) Proceedings of the 9th international barley. Genetics symposium, 20–26 June 2004, Brno, Czech Republic. Agricultural Research Institute Kromeriz Ltd, pp85–79

  • Schepers HTAM (1985) Development and persistence of resistance to fungicides in Sphaerotheca fuliginea in cucumbers in the Netherlands. (Wageningen: Schepers), pp 56. https://edepot.wur.nl/205661

  • Schmalenbach I, Korber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theoretical and Applied Genetics 117:1093–1106

    Article  PubMed  Google Scholar 

  • Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) Plant Prom: a database of plant promoter sequences. Nucleic Acids Research 31:114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaner G, Finney RE (1980) New source of slow leaf rusting resistance in wheat. Phytopathology 70:1183–1186

    Article  Google Scholar 

  • Shtaya MJY, Marcel TC, Sillero JC, Niks RE, Rubiales D (2006) Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica 151:421–429

    Article  Google Scholar 

  • Singh AK, Rana MK, Singh S, Kumar S, Kumar R, Singh R (2013) CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. Journal ofPlant Biochemistry and Biotechnology 23:175–183

    Article  Google Scholar 

  • Struss P, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics 97:308–315

    Article  CAS  Google Scholar 

  • Stubbs R, Prescott JM, Saari E E, Dubin HJ (1986) Cereal disease methodology manual. Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT). Mexico. pp 46

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106:411–422

    Article  CAS  PubMed  Google Scholar 

  • Tinker NA, Mathe DE (1994) Main effects of quantitative trait loci in Harrington /TR306 two-row barely. Barley Genetic Newsletter (USA) 23:72–78

    Google Scholar 

  • Triky-Dotan S, Yermiyahu U, Katan J, Gamliel A (2005) Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology 95:1438–1444

    Article  PubMed  Google Scholar 

  • Uniprot C (2009) The Universal Protein Resource (UniProt). Nucleic Acids Research 38:142–148

    Google Scholar 

  • UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Research 43:204–212

    Article  Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics 114:1091–1103

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Prasad M, Zhang H, Kota R, Sigmund R, Scholz U, Stein N, Graner A (2004) EST-derived markers and transcript map of barley: a resource for interspecific transferability and comparative mapping in cereals. In: Spunar J, Janikova J (eds) Proceedings of the 9th international barley genetics symposium, 20–26 June 2004, Brno, Czech Republic. Agricultural Research Institute Kromeriz Ltd, pp 332–338

  • Von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theoretical and Applied Genetics 111:583–590

    Article  Google Scholar 

  • Wang SB, Wen YJ, Ren WL, Li Ni Y, Zhang J, Feng JY, Zhang YM (2016) Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology. Scientific Reports 6:29951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen YJ, Zhang H, Zhang J, Feng JY, Dunwell J, Zhang YM (2018) An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Brief Bioinformatics 20:1–12

    CAS  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner Andrzej Kilian E (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genome 7:206

    Article  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell AJ, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wiese J, Kranz T, Schubert S (2004) Induction of pathogen resistance in barley by abiotic stress. Plant Biology 6:529–536

    Article  CAS  PubMed  Google Scholar 

  • Wiese J, Wiese H, Schwartz J, Schubert S (2005) Osmotic stress and silicon act additively in enhancing pathogen resistance in barley against barley powdery mildew. Plant Nutrition and Soil Science 168:269–274

    Article  CAS  Google Scholar 

  • Xue Q, Zhu Z, Musickb JT, Stewartd BA, Donald AD (2006) Physiological mechanisms contributing to the increased water use efficiency in winter wheat under deficit irrigation. Plant Physiology 163:154–164

    Article  CAS  Google Scholar 

  • Yan S, Sun D, Sun G (2015) Genetic Divergence in Domesticated and Non-Domesticated Gene Regions of Barley Chromosomes. PLoS ONE 10(3):e0121106. https://doi.org/10.1371/journal.pone.0121106

  • Yan L, Yang X, Sun Z, Du J, Pu X, Yang J, Zeng Y (2021) Analysis and mapping quantitative trait loci for histidine content in barley (Hordeum vulgare L.) using microsatellite markers. Genetic Resources and Crop Evolution 68:2107–2118

  • Yun SJ, Gyenis L, Bossolini E, Hayes PM, Matus I, Smith KP, Steffenson BJ, Tuberosa R, Muehlbauer GJ (2006) Validation of Quantitative Trait Loci for Multiple Disease Resistance in Barley Using Advanced Backcross Lines Developed with a Wild Barley. Published in Crop Science 46:1179–1186

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Research 14:415–421h

    Article  Google Scholar 

  • Zhang De, Xing M, Godfry H (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology 12:563–584

    Article  CAS  PubMed  Google Scholar 

  • Zhang YW, Wen YJ, Dunwell JM, Zhang YM (2020) QTL.gCIMapping.GUI v2.0: An R software for detecting small-effect and linked QTLs for quantitative traits in bi-parental segregation populations. Computational and Structural Biotechnology 18:59–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: Hossein Sabouri, Fakhtak Taliei, Mahnaz Katouzi; Material preparation and data collection: Hossein Sabouri, Somayyeh Makhtoum; Formal analysis and investigation: Somayyeh Makhtoum, Hossein Sabouri, Fakhtak Taliei, Abdollatif Gholizadeh, Leila Ahangar; Writing — original draft preparation: Somayyeh Makhtoum; Writing — review and editing: Hossein Sabouri, Mahnaz Katouzi; Funding acquisition: Hossein Sabouri; Resources: Hossein Sabouri. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hossein Sabouri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhtoum, S., Sabouri, H., Gholizadeh, A. et al. Important chromosomal regions for genetic control of powdery mildew resistance under control, drought, and saline conditions in barley (Hordeum vulgare L.). Trop. plant pathol. 46, 622–642 (2021). https://doi.org/10.1007/s40858-021-00462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-021-00462-0

Keywords

Navigation