Skip to main content
Log in

Recent progress in porous carbon-supported materials as efficient oxygen electrocatalysts for zinc-air batteries

高效多孔碳基催化剂的研究进展及其在锌空气电池中应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The urgency of the energy shortage has intensified, and the emission of carbon dioxide from conventional fossil fuels has significantly led to global warming in recent years. Zinc-air batteries (ZABs), as a promising sustainable energy source, have garnered widespread attention due to their favorable characteristics, including cost-effectiveness, high specific energy density, safety, and environmental friendliness. However, the progress of ZAB development has been hindered by the limited catalytic efficiency and poor stability of air catalysts at the cathode. This review focuses on the latest advancements and research progress in porous carbon-based oxygen catalysts for air cathodes. It begins with a brief introduction to ZABs, followed by an exploration of the structure and composition of carbon support, emphasizing pore structure and heteroatom doping. The design and preparation of porous carbon support for ZABs are discussed in detail based on pore size, namely, micropores, mesopores, and macropores. Furthermore, various synthesis strategies for heteroatom doping are summarized, along with their impacts on battery performance, categorized by nitrogen, fluorine, sulfur, phosphorus, and boron. Finally, an outlook on the future challenges and opportunities for ZABs is proposed.

摘要

近年来, 能源短缺问题日益突出, 传统化石燃料使用过程中排放的二氧化碳大大加剧了全球变暖. 锌空气电池作为一种新型能源, 由于其低成本、高比能量密度、高安全性和环境友好等优点而受到广泛关注. 然而, 锌空气电池的发展速度缓慢, 一个主要原因是阴极空气催化剂的催化效率低和稳定性差. 本文总结了用于空气阴极的多孔碳基催化剂的最新研究进展. 在对锌空气电池进行简要介绍后, 从孔结构和杂原子掺杂两方面介绍了碳载体的结构和组成. 根据孔径大小: 微孔、介孔和大孔, 详细介绍了锌空气电池中多孔碳的设计和制备. 此外, 还根据氮、氟、硫、磷和硼等杂原子类别, 分别讨论了杂原子掺杂的合成策略以及相应电池性能. 最后, 本文对锌空气电池未来发展过程中的挑战和机遇进行了展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanova ME, Peters R, Müller M, et al. Technological pathways to produce compressed and highly pure hydrogen from solar power. Angew Chem Int Ed, 2023, 62: e202218850

    Article  CAS  Google Scholar 

  2. Li C, Mogollón JM, Tukker A, et al. Environmental impacts of global offshore wind energy development until 2040. Environ Sci Technol, 2022, 56: 11567–11577

    Article  CAS  Google Scholar 

  3. Wegertseder P, Lund P, Mikkola J, et al. Combining solar resource mapping and energy system integration methods for realistic valuation of urban solar energy potential. Sol Energy, 2016, 135: 325–336

    Article  Google Scholar 

  4. Armand M, Tarascon JM. Building better batteries. Nature, 2008, 451: 652–657

    Article  CAS  Google Scholar 

  5. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334: 928–935

    Article  CAS  Google Scholar 

  6. Aricò AS, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4: 366–377

    Article  Google Scholar 

  7. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors?. Chem Rev, 2004, 104: 4245–4270

    Article  CAS  Google Scholar 

  8. Cano ZP, Banham D, Ye S, et al. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy, 2018, 3: 279–289

    Article  Google Scholar 

  9. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem, 2015, 7: 19–29

    Article  CAS  Google Scholar 

  10. Nitta N, Wu F, Lee JT, et al. Li-ion battery materials: Present and future. Mater Today, 2015, 18: 252–264

    Article  CAS  Google Scholar 

  11. Whittingham MS. Lithium batteries and cathode materials. Chem Rev, 2004, 104: 4271–4302

    Article  CAS  Google Scholar 

  12. Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ Sci, 2011, 4: 3243–3262

    Article  CAS  Google Scholar 

  13. Scrosati B, Garche J. Lithium batteries: Status, prospects and future. J Power Sources, 2010, 195: 2419–2430

    Article  CAS  Google Scholar 

  14. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367

    Article  CAS  Google Scholar 

  15. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater, 2010, 22: 587–603

    Article  CAS  Google Scholar 

  16. Goodenough JB, Park KS. The Li-ion rechargeable battery: A perspective. J Am Chem Soc, 2013, 135: 1167–1176

    Article  CAS  Google Scholar 

  17. Cheng F, Chen J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev, 2012, 41: 2172–2192

    Article  CAS  Google Scholar 

  18. Wang ZL, Xu D, Xu JJ, et al. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes. Chem Soc Rev, 2014, 43: 7746–7786

    Article  CAS  Google Scholar 

  19. Christensen J, Albertus P, Sanchez-Carrera RS, et al. A critical review of Li/air batteries. J Electrochem Soc, 2012, 159: R1–R30

    Article  CAS  Google Scholar 

  20. Elia GA, Marquardt K, Hoeppner K, et al. An overview and future perspectives of aluminum batteries. Adv Mater, 2016, 28: 7564–7579

    Article  CAS  Google Scholar 

  21. Cai S, Cheng Y, Meng Z, et al. The design of single iron atoms dispersed with nitrogen coordination environment electrocatalyst for zinc-air battery. J Power Sources, 2022, 529: 231174

    Article  CAS  Google Scholar 

  22. Liu Y, Sun Q, Li W, et al. A comprehensive review on recent progress in aluminum-air batteries. Green Energy Environ, 2017, 2: 246–277

    Article  Google Scholar 

  23. Bruce PG, Freunberger SA, Hardwick LJ, et al. Li−O2 and Li−S batteries with high energy storage. Nat Mater, 2012, 11: 19–29

    Article  CAS  Google Scholar 

  24. Girishkumar G, McCloskey B, Luntz AC, et al. Lithium-air battery: Promise and challenges. J Phys Chem Lett, 2010, 1: 2193–2203

    Article  CAS  Google Scholar 

  25. Lee JS, Tai Kim S, Cao R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater, 2011, 1: 34–50

    Article  CAS  Google Scholar 

  26. Lv Q, Zhu Z, Ni Y, et al. Atomic ruthenium-riveted metal-organic framework with tunable d-band modulates oxygen redox for lithium–oxygen batteries. J Am Chem Soc, 2022, 144: 23239–23246

    Article  CAS  Google Scholar 

  27. Zhu Z, Ni Y, Lv Q, et al. Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride. Proc Natl Acad Sci USA, 2021, 118: e2024619118

    Article  CAS  Google Scholar 

  28. Adelhelm P, Hartmann P, Bender CL, et al. From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J Nanotechnol, 2015, 6: 1016–1055

    Article  CAS  Google Scholar 

  29. Xia C, Black R, Fernandes R, et al. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem, 2015, 7: 496–501

    Article  CAS  Google Scholar 

  30. Peled E, Golodnitsky D, Hadar R, et al. Challenges and obstacles in the development of sodium-air batteries. J Power Sources, 2013, 244: 771–776

    Article  CAS  Google Scholar 

  31. Ren X, Lau KC, Yu M, et al. Understanding side reactions in K−O2 batteries for improved cycle life. ACS Appl Mater Interfaces, 2014, 6: 19299–19307

    Article  CAS  Google Scholar 

  32. Qin L, Xiao N, Zhang S, et al. From K−O2 to K-air batteries: Realizing superoxide batteries on the basis of dry ambient air. Angew Chem Int Ed, 2020, 59: 10498–10501

    Article  CAS  Google Scholar 

  33. Gilmore P, Sundaresan VB. A functionally graded cathode architecture for extending the cycle-life of potassium-oxygen batteries. Batteries Supercaps, 2019, 2: 662

    Article  Google Scholar 

  34. Zhang T, Tao Z, Chen J. Magnesium-air batteries: From principle to application. Mater Horiz, 2014, 1: 196–206

    Article  Google Scholar 

  35. Li CS, Sun Y, Gebert F, et al. Current progress on rechargeable magnesium-air battery. Adv Energy Mater, 2017, 7: 1700869

    Article  Google Scholar 

  36. Ma Y, Li N, Li D, et al. Performance of Mg−14Li−1Al−0.1Ce as anode for Mg-air battery. J Power Sources, 2011, 196: 2346–2350

    Article  CAS  Google Scholar 

  37. McKerracher RD, Ponce de Leon C, Wills RGA, et al. A review of the iron-air secondary battery for energy storage. ChemPlusChem, 2015, 80: 323–335

    Article  CAS  Google Scholar 

  38. Narayanan SR, Prakash GKS, Manohar A, et al. Materials challenges and technical approaches for realizing inexpensive and robust iron-air batteries for large-scale energy storage. Solid State Ion, 2012, 216: 105–109

    Article  CAS  Google Scholar 

  39. Hang BT, Yoon SH, Okada S, et al. Effect of metal-sulfide additives on electrochemical properties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes. J Power Sources, 2007, 168: 522–532

    Article  CAS  Google Scholar 

  40. Li Y, Dai H. Recent advances in zinc-air batteries. Chem Soc Rev, 2014, 43: 5257–5275

    Article  CAS  Google Scholar 

  41. Fu J, Cano ZP, Park MG, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Adv Mater, 2017, 29: 1604685

    Article  Google Scholar 

  42. Rahman MA, Wang X, Wen C. High energy density metal-air batteries: A review. J Electrochem Soc, 2013, 160: A1759–A1771

    Article  CAS  Google Scholar 

  43. Service RF. Zinc aims to beat lithium batteries at storing energy. Science, 2021, 372: 890–891

    Article  CAS  Google Scholar 

  44. Pan J, Xu YY, Yang H, et al. Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv Sci, 2018, 5: 1700691

    Article  Google Scholar 

  45. Cai X, Lai L, Lin J, et al. Recent advances in air electrodes for Zn-air batteries: Electrocatalysis and structural design. Mater Horiz, 2017, 4: 945–976

    Article  CAS  Google Scholar 

  46. Lim B, Jiang M, Camargo PHC, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 2009, 324: 1302–1305

    Article  CAS  Google Scholar 

  47. Greeley J, Stephens IEL, Bondarenko AS, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem, 2009, 1: 552–556

    Article  CAS  Google Scholar 

  48. Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev, 2015, 44: 2168–2201

    Article  CAS  Google Scholar 

  49. Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal, 2012, 2: 1765–1772

    Article  CAS  Google Scholar 

  50. Escalera-López D, Czioska S, Geppert J, et al. Phase- and surface composition-dependent electrochemical stability of Ir−Ru nanoparticles during oxygen evolution reaction. ACS Catal, 2021, 11: 9300–9316

    Article  Google Scholar 

  51. Liang HW, Zhuang X, Brüller S, et al. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat Commun, 2014, 5: 4973

    Article  CAS  Google Scholar 

  52. Su CY, Cheng H, Li W, et al. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv Energy Mater, 2017, 7: 1602420

    Article  Google Scholar 

  53. Chen Y, Ji S, Zhao S, et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat Commun, 2018, 9: 5422

    Article  CAS  Google Scholar 

  54. Liu S, Wang M, Sun X, et al. Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc-air batteries. Adv Mater, 2018, 30: 1704898

    Article  Google Scholar 

  55. Liu L, Wang Y, Yan F, et al. Cobalt-encapsulated nitrogen-doped carbon nanotube arrays for flexible zinc-air batteries. Small Methods, 2020, 4: 1900571

    Article  CAS  Google Scholar 

  56. Liu H, Liu Q, Wang Y, et al. Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chin Chem Lett, 2022, 33: 683–692

    Article  CAS  Google Scholar 

  57. Mechili M, Vaitsis C, Argirusis N, et al. Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries. Renew Sustain Energy Rev, 2022, 156: 111970

    Article  CAS  Google Scholar 

  58. Wei L, Ang EH, Yang Y, et al. Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air batteries. J Power Sources, 2020, 477: 228696

    Article  CAS  Google Scholar 

  59. Wu S, Deng D, Zhang E, et al. CoN nanoparticles anchored on ultra-thin N-doped graphene as the oxygen reduction electrocatalyst for highly stable zinc-air batteries. Carbon, 2022, 196: 347–353

    Article  CAS  Google Scholar 

  60. Wu M, Zhang G, Qiao J, et al. Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy, 2019, 61: 86–95

    Article  CAS  Google Scholar 

  61. Xiao Y, Wen Z, Su D, et al. A rational self-sacrificing template strategy to construct 2D layered porosity Fe3N−N−C catalyst for high-performance zinc-air battery. J Alloys Compd, 2023, 938: 168517

    Article  CAS  Google Scholar 

  62. Wu J, Su J, Wu T, et al. Scalable synthesis of 2D Mo2C and thickness-dependent hydrogen evolution on its basal plane and edges. Adv Mater, 2023, 35: 2209954

    Article  CAS  Google Scholar 

  63. Ramakrishnan S, Balamurugan J, Vinothkannan M, et al. Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries. Appl Catal B-Environ, 2020, 279: 119381

    Article  CAS  Google Scholar 

  64. Xu Y, Sumboja A, Groves A, et al. Enhancing bifunctional catalytic activity of cobalt-nickel sulfide spinel nanocatalysts through transition metal doping and its application in secondary zinc-air batteries. RSC Adv, 2020, 10: 41871–41882

    Article  CAS  Google Scholar 

  65. Lu Q, Wu H, Zheng X, et al. Controllable constructing Janus homologous heterostructures of transition metal alloys/sulfides for efficient oxygen electrocatalysis. Adv Energy Mater, 2022, 12: 2202215

    Article  CAS  Google Scholar 

  66. Qie L, Chen WM, Wang ZH, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater, 2012, 24: 2047–2050

    Article  Google Scholar 

  67. Zheng F, Yang Y, Chen Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun, 2014, 5: 5261

    Article  CAS  Google Scholar 

  68. Xu Y, Zhu Y, Liu Y, et al. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater, 2013, 3: 128–133

    Article  CAS  Google Scholar 

  69. Joo SH, Choi SJ, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412: 169–172

    Article  CAS  Google Scholar 

  70. Xia BY, Yan Y, Li N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy, 2016, 1: 15006

    Article  CAS  Google Scholar 

  71. Wang J, Huang Z, Liu W, et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc, 2017, 139: 17281–17284

    Article  CAS  Google Scholar 

  72. Béguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors. Adv Mater, 2014, 26: 2219–2251

    Article  Google Scholar 

  73. Qie L, Chen W, Xu H, et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci, 2013, 6: 2497–2504

    Article  Google Scholar 

  74. Tang H, Zeng Y, Gao X, et al. Octa(aminophenyl)silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: Synthesis and application for supercapacitors. Electrochim Acta, 2016, 194: 143–150

    Article  CAS  Google Scholar 

  75. Yu M, Wang Z, Hou C, et al. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv Mater, 2017, 29: 1602868

    Article  Google Scholar 

  76. Shinde SS, Lee CH, Jung JY, et al. Unveiling dual-linkage 3D hexaiminobenzene metal-organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ Sci, 2019, 12: 727–738

    Article  CAS  Google Scholar 

  77. Lu XF, Zhang SL, Shangguan E, et al. Nitrogen-doped cobalt pyrite yolk-shell hollow spheres for long-life rechargeable Zn-air batteries. Adv Sci, 2020, 7: 2001178

    Article  CAS  Google Scholar 

  78. Yang D, Chen D, Jiang Y, et al. Carbon-based materials for all-solid-state zinc-air batteries. Carbon Energy, 2021, 3: 50–65

    Article  Google Scholar 

  79. Arafat Y, Azhar MR, Zhong Y, et al. Metal-free carbon based air electrodes for Zn-air batteries: Recent advances and perspective. Mater Res Bull, 2021, 140: 111315

    Article  CAS  Google Scholar 

  80. Liu D, Tong Y, Yan X, et al. Recent advances in carbon-based bi-functional oxygen catalysts for zinc-air batteries. Batteries Supercaps, 2019, 2: 743–765

    Article  Google Scholar 

  81. Gao Y, Kong D, Cao F, et al. Synergistically tuning the graphitic degree, porosity, and the configuration of active sites for highly active bifunctional catalysts and Zn-air batteries. Nano Res, 2022, 15: 7959–7967

    Article  CAS  Google Scholar 

  82. Wang T, Wang H. Research progress on porous carbon materials. Sci Sin-Chim, 2019, 49: 729–740

    Article  Google Scholar 

  83. Li K, Valla J, Garcia-Martinez J. Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking. Chem- CatChem, 2014, 6: 46–66

    CAS  Google Scholar 

  84. Wang M, Lei X, Hu L, et al. High-performance waste biomass-derived microporous carbon electrocatalyst with a towel-like surface for alkaline metal/air batteries. Electrochim Acta, 2017, 250: 384–392

    Article  CAS  Google Scholar 

  85. Wang M, Zhang C, Meng T, et al. Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. J Power Sources, 2019, 413: 367–375

    Article  CAS  Google Scholar 

  86. Wang K, Liu J, Tang Z, et al. Establishing structure/property relationships in atomically dispersed Co−Fe dual site M−Nx catalysts on microporous carbon for the oxygen reduction reaction. J Mater Chem A, 2021, 9: 13044–13055

    Article  CAS  Google Scholar 

  87. Chen L, Zhang Y, Dong L, et al. Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction. J Mater Chem A, 2020, 8: 4369–4375

    Article  CAS  Google Scholar 

  88. Wu J, Xiong L, Zhao B, et al. Densely populated single atom catalysts. Small Methods, 2020, 4: 1900540

    Article  CAS  Google Scholar 

  89. Wu J, Zhou H, Li Q, et al. Densely populated isolated single Co−N site for efficient oxygen electrocatalysis. Adv Energy Mater, 2019, 9: 1900149

    Article  Google Scholar 

  90. Liang S, Zou LC, Zheng LJ, et al. Highly stable Co single atom confined in hierarchical carbon molecular sieve as efficient electrocatalysts in metal-air batteries. Adv Energy Mater, 2022, 12: 2103097

    Article  CAS  Google Scholar 

  91. Huang R, Cao C, Liu J, et al. Integration of metal single atoms on hierarchical porous nitrogen-doped carbon for highly efficient hydrogenation of large-sized molecules in the pharmaceutical industry. ACS Appl Mater Interfaces, 2020, 12: 17651–17658

    Article  CAS  Google Scholar 

  92. Sheng J, Sun S, Jia G, et al. Doping effect on mesoporous carbon-supported single-site bifunctional catalyst for zinc-air batteries. ACS Nano, 2022, 16: 15994–16002

    Article  CAS  Google Scholar 

  93. Li Y, Zhong C, Liu J, et al. Atomically thin mesoporous Co3O4 layers strongly coupled with N−rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv Mater, 2018, 30: 1703657

    Article  Google Scholar 

  94. Park MG, Lee DU, Seo MH, et al. 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries. Small, 2016, 12: 2707–2714

    Article  CAS  Google Scholar 

  95. Xie X, Peng L, Yang H, et al. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv Mater, 2021, 33: 2101038

    Article  CAS  Google Scholar 

  96. Ding J, Wang P, Ji S, et al. N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries. Electrochim Acta, 2019, 296: 653–661

    Article  CAS  Google Scholar 

  97. Yu N, Chen H, Kuang J, et al. Efficient oxygen electrocatalysts with highly-exposed Co−N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Res, 2022, 15: 7209–7219

    Article  CAS  Google Scholar 

  98. Kurian M, Ghosh M, Vijayakumar V, et al. Influence of ice templating on oxygen reduction catalytic activity of metal-free heteroatom-doped mesoporous carbon derived from polypyrrole for zinc-air batteries. Energy Tech, 2022, 10: 2200840

    Article  CAS  Google Scholar 

  99. Xu L, Wang C, Deng D, et al. Cobalt oxide nanoparticles/nitrogen-doped graphene as the highly efficient oxygen reduction electrocatalyst for rechargeable zinc-air batteries. ACS Sustain Chem Eng, 2020, 8: 343–350

    Article  CAS  Google Scholar 

  100. Bu Y, Gwon O, Nam G, et al. A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Nano, 2017, 11: 11594–11601

    Article  CAS  Google Scholar 

  101. Li Q, Wu J, Wu T, et al. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution. Adv Funct Mater, 2021, 31: 2102002

    Article  CAS  Google Scholar 

  102. Cai S, Wang R, Guo W, et al. Three-dimensional macroporous Co-embedded N-doped carbon interweaving with carbon nanotubes as excellent bifunctional catalysts for Zn-air batteries. Langmuir, 2018, 34: 1992–1998

    Article  CAS  Google Scholar 

  103. Han Q, Zhao X, Luo Y, et al. Synergistic binary Fe−Co nanocluster supported on defective tungsten oxide as efficient oxygen reduction electrocatalyst in zinc-air battery. Adv Sci, 2022, 9: 2104237

    Article  CAS  Google Scholar 

  104. Douka AI, Xu Y, Yang H, et al. A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries. Adv Mater, 2020, 32: 2002170

    Article  CAS  Google Scholar 

  105. Zhao X, Han Q, Li J, et al. Ordered macroporous design of sacrificial Co/VN nano-heterojunction as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Chem Eng J, 2022, 433: 133509

    Article  CAS  Google Scholar 

  106. Gao X, Xie X, Sun K, et al. Molten salt-assisted synthesis of special open-cell Fe, N co-doped porous carbon as an efficient electrocatalyst for zinc-air batteries. New J Chem, 2022, 46: 989–994

    Article  CAS  Google Scholar 

  107. Liu Z, Zhu Y, Xiao K, et al. Fe/Fe3C embedded in N-doped worm-like porous carbon for high-rate catalysis in rechargeable zinc-air batteries. ACS Appl Mater Interfaces, 2021, 13: 24710–24722

    Article  Google Scholar 

  108. Zhao R, Wang H, Zhang X, et al. Hierarchically porous three-dimensional (3D) carbon nanorod networks with a high content of FeNx sites for efficient oxygen reduction reaction. Langmuir, 2022, 38: 11372–11381

    Article  CAS  Google Scholar 

  109. Ma J, Li J, Wang R, et al. Hierarchical porous S-doped Fe−N−C electrocatalyst for high-power-density zinc-air battery. Mater Today Energy, 2021, 19: 100624

    Article  CAS  Google Scholar 

  110. Li W, Liu B, Liu D, et al. Alloying Co species into ordered and interconnected macroporous carbon polyhedra for efficient oxygen reduction reaction in rechargeable zinc-air batteries. Adv Mater, 2022, 34: 2109605

    Article  CAS  Google Scholar 

  111. Zhang X, Han X, Jiang Z, et al. Atomically dispersed hierarchically ordered porous Fe−N−C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-air battery. Nano Energy, 2020, 71: 104547

    Article  CAS  Google Scholar 

  112. Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323: 760–764

    Article  CAS  Google Scholar 

  113. Liang HW, Wu ZY, Chen LF, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy, 2015, 11: 366–376

    Article  CAS  Google Scholar 

  114. Yao WT, Yu L, Yao PF, et al. Bulk production of nonprecious metal catalysts from cheap starch as precursor and their excellent electrochemical activity. ACS Sustain Chem Eng, 2016, 4: 3235–3244

    Article  CAS  Google Scholar 

  115. Peng L, Yang J, Yang Y, et al. Mesopore-rich Fe−N−C catalyst with FeN4−O−NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv Mater, 2022, 34: 2202544

    Article  CAS  Google Scholar 

  116. Kim HS, Lee J, Jang JH, et al. Waste pig blood-derived 2D Fe single-atom porous carbon as an efficient electrocatalyst for zinc-air batteries and AEMFCs. Appl Surf Sci, 2021, 563: 150208

    Article  CAS  Google Scholar 

  117. Meng F, Zhong H, Bao D, et al. In situ coupling of strung Co4N and intertwined N−C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J Am Chem Soc, 2016, 138: 10226–10231

    Article  CAS  Google Scholar 

  118. Jiang R, Li Q, Zheng X, et al. Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction. Nano Res, 2022, 15: 7917–7924

    Article  CAS  Google Scholar 

  119. He T, Chen Y, Liu Q, et al. Theory-guided regulation of FeN4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal-air batteries. Angew Chem Int Ed, 2022, 61: e202201007

    Article  CAS  Google Scholar 

  120. Yang HB, Miao J, Hung SF, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci Adv, 2016, 2: e1501122

    Article  Google Scholar 

  121. Panomsuwan G, Chiba S, Kaneko Y, et al. In situ solution plasma synthesis of nitrogen-doped carbon nanoparticles as metal-free electrocatalysts for the oxygen reduction reaction. J Mater Chem A, 2014, 2: 18677–18686

    Article  CAS  Google Scholar 

  122. Shen Y, Shi D, Liu L, et al. Pd nanoparticles/F, N codoping graphene composites for oxygen reduction and zinc-air batteries. ACS Sustain Chem Eng, 2019, acssuschemeng.9b01615

  123. Sun YN, Yang J, Ding X, et al. Synergetic contribution of nitrogen and fluorine species in porous carbons as metal-free and bifunctional oxygen electrocatalysts for zinc-air batteries. Appl Catal B-Environ, 2021, 297: 120448

    Article  CAS  Google Scholar 

  124. Wu M, Wang Y, Wei Z, et al. Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries. J Mater Chem A, 2018, 6: 10918–10925

    Article  CAS  Google Scholar 

  125. Deng J, Wang L, Jin F, et al. A simple approach making acetylene black electrocatalytically active for flexible rechargeable zinc-air batteries. J Mater Chem A, 2021, 9: 11145–11150

    Article  CAS  Google Scholar 

  126. Wu H, Wang J, Wang G, et al. High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer. Nano Energy, 2016, 30: 801–809

    Article  CAS  Google Scholar 

  127. Cao Q, Wan L, Xu Z, et al. A fluorinated covalent organic framework with accelerated oxygen transfer nanochannels for high-performance zinc-air batteries. Adv Mater, 2023, 35: 2210550

    Article  CAS  Google Scholar 

  128. Yin X, Feng L, Yang W, et al. Interface engineering of plasmonic induced Fe/N/C−F catalyst with enhanced oxygen catalysis performance for fuel cells application. Nano Res, 2022, 15: 2138–2146

    Article  CAS  Google Scholar 

  129. Xue W, Zhou Q, Cui X, et al. Metal-organic frameworks-derived heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. Nano Energy, 2021, 86: 106073

    Article  CAS  Google Scholar 

  130. Nam G, Jang H, Sung J, et al. Evaluation of the volumetric activity of the air electrode in a zinc-air battery using a nitrogen and sulfur co-doped metal-free electrocatalyst. ACS Appl Mater Interfaces, 2020, 12: 57064–57070

    Article  CAS  Google Scholar 

  131. Chen Z, Liu H, Zhang L, et al. Facile and scale synthesis of Co/N/S-doped porous graphene-like carbon architectures as electrocatalysts for sustainable zinc-air battery cells. ACS Sustain Chem Eng, 2019, 7: 7743–7749

    Article  CAS  Google Scholar 

  132. Liu S, Zhang X, Wang G, et al. High-efficiency Co/CoxSy@S,N-co-doped porous carbon electrocatalysts fabricated from controllably grown sulfur- and nitrogen-including cobalt-based MOFs for rechargeable zinc-air batteries. ACS Appl Mater Interfaces, 2017, 9: 34269–34278

    Article  CAS  Google Scholar 

  133. Yu H, Fan F, He C, et al. Sulfur-modulated FeNi nanoalloys as bifunctional oxygen electrode for efficient rechargeable aqueous Zn-air batteries. Sci China Mater, 2022, 65: 3007–3016

    Article  CAS  Google Scholar 

  134. Ouyang J, Gong J, Li L, et al. Application of Co/Co9S8@N, S doped porous carbon composites prepared by ball milling for zinc-air battery. J Electroanal Chem, 2022, 920: 116628

    Article  CAS  Google Scholar 

  135. Zhou Y, Lu R, Tao X, et al. Boosting oxygen electrocatalytic activity of Fe−N−C catalysts by phosphorus incorporation. J Am Chem Soc, 2023, 145: 3647–3655

    Article  CAS  Google Scholar 

  136. Cai X, Lai L, Zhou L, et al. Durable freestanding hierarchical porous electrode for rechargeable zinc-air batteries. ACS Appl Energy Mater, 2019, 2: 1505–1516

    Article  CAS  Google Scholar 

  137. Cai S, Meng Z, Li G, et al. Nitrogen doped porous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content for zinc-air battery. Nano Res, 2022, 16: 5887–5893

    Article  Google Scholar 

  138. Wang Y, Liu R, Chen W, et al. Bimetallic sulfides embedded in a boron modulated carbon matrix as the bifunctional catalyst with a low oxygen evolution reaction overpotential for an advanced zinc-air battery. ACS Sustain Chem Eng, 2022, 10: 14486–14494

    Article  CAS  Google Scholar 

  139. Lu Y, Zou S, Li J, et al. Fe, B, and N codoped carbon nanoribbons derived from heteroatom polymers as high-performance oxygen reduction reaction electrocatalysts for zinc-air batteries. Langmuir, 2021, 37: 13018–13026

    Article  CAS  Google Scholar 

  140. Gao L, Zhang H, Zhang Z. Ingeniously introducing of boron to adjust hetero-atoms and their bonding with cobalt for improving the catalysis of oxygen reduction reaction. J Solid State Chem, 2020, 289: 121523

    Article  CAS  Google Scholar 

  141. Wang L, Wang Y, Wu M, et al. Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc-air batteries. Small, 2018, 14: 1800737

    Article  Google Scholar 

  142. Lu Z, Li Z, Huang S, et al. Construction of 3D carbon network with N, B,F-tridoping for efficient oxygen reduction reaction electrocatalysis and high performance zinc air battery. Appl Surf Sci, 2020, 507: 145154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Department of Science and Technology of Henan Province (232102240038), the Research Project in School-level of Henan University of Technology (2020BS017), and Henan Province Education Department Natural Science Research Item (21A480005).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Cai S, An Y, and Wu J collected and summarized the literature. Cai S wrote the original manuscript. Feng Y, Duan L, Zhang H and Zhang M developed the concept and offered creative proposal for improving the depth of the review. Wu J and Tang H supervised the project. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Shichang Cai  (蔡世昌) or Jiabin Wu  (吴佳宾).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Shichang Cai received his PhD degree from Wuhan University of Technology in 2019. He works as the lecturer at the School of Materials Science & Engineering, Henan University of Technology. His research interests focus on the porous carbon-based catalytic materials for energy conversion, including fuel cells and zinc-air batteries.

Jiabin Wu received his PhD degree from Huazhong University of Science and Technology in 2020. He was a postdoctor at the University of Waterloo. He is currently a postdoctor in Prof. Yadong Li’s group at Tsinghua University. His research interests focus on the renewable energy materials and devices.

Haolin Tang received his PhD degree in materials science from Wuhan University of Technology in 2007. Then he worked as a research fellow at Nanyang Technological University for one year, and in 2011 he was appointed as a full professor of the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology. His main research interests focus on advanced materials for fuel cells, metal-air batteries, and lithium-ion batteries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., An, Y., Feng, Y. et al. Recent progress in porous carbon-supported materials as efficient oxygen electrocatalysts for zinc-air batteries. Sci. China Mater. 66, 3381–3400 (2023). https://doi.org/10.1007/s40843-023-2527-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2527-7

Keywords

Navigation