Skip to main content
Log in

Nitrogen doped porous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content for zinc-air battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The controllable construction of non-noble metal based bifunctional catalysts with high activities towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is of great significance, but remains a challenge. Herein, we reported an effective method to synthesize cobalt-nitrogen doped mesoporous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content (Co-N-PX-MC, X = 0.5, 1.0, 1.5, 2.0). The mesoporous carbon substrate endowed the as-prepared samples with more exposed active surface (236.50 m2·g−1) and the most appropriate doping ratio of phosphorus had been investigated to be 1.5 (Co-N-P1.5-MC). For ORR, Co-N-P1.5-MC exhibited excellent catalytic activity with more positive onset potential (1.01 V) and half-wave potential (0.84 V) than the other samples. For OER, Co-N-P1.5-MC also showed a low overpotential of 415 mV. Combining experimental results and density-functional theory (DFT) calculations, the outstanding bifunctional catalytic performance of Co-N-P1.5-MC was due to the synergistic cooperation between the P and N dopants, which could reduce the reaction barriers and was favorable for ORR and OER. Moreover, the Zn-air battery using Co-N-P1.5-MC as the cathode showed remarkable battery performance with high stability (could operate stably for over 160 h at 10 mA·cm−2) and maximum power density (119 mW·cm−2), demonstrating its potential for practical applications. This work could provide significant enlightenment towards the design and construction of bifunctional oxygen electrocatalyst for next-generation electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Gao, R.; Luo, D.; Bai, Z. Y.; Hu, Y. F.; Yu, A. P.; Chen, Z. W. d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 2020, 11, 5858.

    Article  CAS  Google Scholar 

  2. Wang, Y. C.; Chu, F. L.; Zeng, J.; Wang, Q. J.; Naren, T.; Li, Y. Y.; Cheng, Y.; Lei, Y. P.; Wu, F. X. Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 2021, 15, 210–239.

    Article  CAS  Google Scholar 

  3. Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

    Article  CAS  Google Scholar 

  4. Wang, X.; Raghupathy, R. K. M.; Querebillo, C. J.; Liao, Z. Q.; Li, D. Q.; Lin, K.; Hantusch, M.; Sofer, Z.; Li, B. H.; Zschech, E. et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater. 2021, 33, 2008752.

    Article  CAS  Google Scholar 

  5. Zhang, N.; Zhou, T. P.; Chen, M. L.; Feng, H.; Yuan, R. L.; Zhong, C. A.; Yan, W. S.; Tian, Y. C.; Wu, X. J.; Chu, W. S. et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118.

    Article  CAS  Google Scholar 

  6. Zhang, Y. Q.; Jia, G. C.; Wang, H. W.; Ouyang, B.; Rawat, R. S.; Fan, H. J. Ultrathin CNTs@FeOOH nanoflake core/shell networks as efficient electrocatalysts for the oxygen evolution reaction. Mater. Chem. Front. 2017, 1, 709–715.

    Article  CAS  Google Scholar 

  7. Lu, X. F.; Zhang, S. L.; Shangguan, E. B.; Zhang, P.; Gao, S. Y.; Lou, X. W. Nitrogen-doped cobalt pyrite yolk-shell hollow spheres for long-life rechargeable Zn-air batteries. Adv. Sci. 2020, 7, 2001178.

    Article  CAS  Google Scholar 

  8. Zhang, Y. Q.; Ouyang, B.; Long, G. K.; Tan, H.; Wang, Z.; Zhang, Z.; Gao, W. B.; Rawat, R. S.; Fan, H. J. Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries. Sci. China Chem. 2020, 63, 890–896.

    Article  CAS  Google Scholar 

  9. Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. 2016, 128, 8812–8816.

    Article  Google Scholar 

  10. Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.

    Article  CAS  Google Scholar 

  11. Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; Xie, Y. L.; Du, Y.; Xuan, J. N.; Xiong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 2022, 99, 107325.

    Article  CAS  Google Scholar 

  12. Cai, S. C.; Meng, Z. H.; Tang, H. L.; Wang, Y.; Tsiakaras, P. 3D CoN-doped hollow carbon spheres as excellent bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Appl. Catal. B:Environ. 2017, 217, 477–484.

    Article  CAS  Google Scholar 

  13. Wang, H. X.; Cui, Y. Nanodiamonds for energy. Carbon Energy 2019, 1, 13–18.

    Article  Google Scholar 

  14. Ali, A.; Shen, P. K. Nonprecious metal’s graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications. Carbon Energy 2020, 2, 99–121.

    Article  CAS  Google Scholar 

  15. Sun, J. F.; Xu, Q. Q.; Qi, J. L.; Zhou, D.; Zhu, H. Y.; Yin, J. Z. Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions. ACS Sustainable Chem. Eng. 2020, 8, 14630–14656.

    Article  CAS  Google Scholar 

  16. Asset, T.; Atanassov, P. Iron-nitrogen-carbon catalysts for proton exchange membrane fuel cells. Joule 2020, 4, 33–44.

    Article  CAS  Google Scholar 

  17. Zhou, Y. Z.; Tao, X. F.; Chen, G. B.; Lu, R. H.; Wang, D.; Chen, M. X.; Jin, E. Q.; Yang, J.; Liang, H. W.; Zhao, Y. et al. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat. Commun. 2020, 11, 5892.

    Article  CAS  Google Scholar 

  18. Chen, D. Y.; Zhang, G. P.; Wang, M. M.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Pt/MnO2 nanoflowers anchored to boron nitride aerogels for highly efficient enrichment and catalytic oxidation of formaldehyde at room temperature. Angew. Chem. 2021, 133, 6447–6451.

    Article  Google Scholar 

  19. Yuan, S.; Peng, J. Y.; Cai, B.; Huang, Z. H.; Garcia-Esparza, A. T.; Sokaras, D.; Zhang, Y. R.; Giordano, L.; Akkiraju, K.; Zhu, Y. G. et al. Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution. Nat. Mater. 2022, 21, 673–680.

    Article  CAS  Google Scholar 

  20. Slater, A. G.; Cooper, A. I. Function-led design of new porous materials. Science 2015, 348, aaa8075.

    Article  Google Scholar 

  21. Hosseini Monjezi, B.; Kutonova, K.; Tsotsalas, M.; Henke, S.; Knebel, A. Current trends in metal-organic and covalent organic framework membrane materials. Angew. Chem., Int. Ed. 2021, 60, 15153–15164.

    Article  CAS  Google Scholar 

  22. Jahan, M.; Liu, Z. L.; Loh, K. P. A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372.

    Article  CAS  Google Scholar 

  23. Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

    Article  CAS  Google Scholar 

  24. Li, Z. X.; Zhang, X.; Kang, Y. K.; Yu, C. C.; Wen, Y. Y.; Hu, M. L.; Meng, D.; Song, W. Y.; Yang, Y. Interface engineering of Co-LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction. Adv. Sci. 2021, 8, 2002631.

    Article  CAS  Google Scholar 

  25. Meng, Z. H.; Cai, S. C.; Wang, R.; Tang, H. L.; Song, S. Q.; Tsiakaras, P. Bimetallic-organic framework-derived hierarchically porous Co-Zn-N-C as efficient catalyst for acidic oxygen reduction reaction. Appl. Catal. B:Environ. 2019, 244, 120–127.

    Article  CAS  Google Scholar 

  26. Lu, K. K.; Song, X. F.; Xu, L. H.; Xin, W. L.; Shan, D. Phosphorene defect/edge sites induced ultrafine CoPx doping during one-pot synthesis of ZIF-67: The boosted effect on electrocatalytic oxygen reduction after carbonization. Appl. Surf. Sci. 2019, 475, 67–74.

    Article  CAS  Google Scholar 

  27. Cai, S. C.; Meng, Z. H.; Cheng, Y. P.; Zhu, Z. Y.; Chen, Q. Q.; Wang, P.; Kan, E. J.; Ouyang, B.; Zhang, H. N.; Tang, H. L. Three dimension Ni/Co-decorated N-doped hierarchically porous carbon derived from metal-organic frameworks as trifunctional catalysts for Zn-air battery and microbial fuel cells. Electrochim. Acta 2021, 395, 139074.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Henan Province Education Department Natural Science Research Item (No. 21A480005), and the Research Project at School-level of Henan University of Technology (No. 2020BS017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shichang Cai or Bo Ouyang.

Electronic supplementary material

12274_2022_5126_MOESM1_ESM.pdf

Nitrogen doped porous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content for zinc-air battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Meng, Z., Li, G. et al. Nitrogen doped porous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content for zinc-air battery. Nano Res. 16, 5887–5893 (2023). https://doi.org/10.1007/s12274-022-5126-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5126-4

Keywords

Navigation