Skip to main content
Log in

Tough, self-healable, antifreezing and redox-mediated gel polymer electrolyte with three-role K3[Fe(CN)]6 for wearable flexible supercapacitors

可穿戴柔性超级电容器用强韧、自修复、抗冻的三角色铁氰化钾氧化还原凝胶聚合物电解质

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Supercapacitors exhibiting toughness, self-healing, and high specific capacitance have practical significance for use in flexible and wearable electronic equipment. To meet these requirements, a novel multifunctional gel polymer electrolyte (GPE) consisting of polyvinyl alcohol (PVA)-sodium alginate (SA)-K3[Fe(CN)]6-Na2SO4 was prepared. In this GPE, K3[Fe(CN)]6 plays three crucial roles by serving as a carrier donor, ionic crosslinking agent and redox-active mediator. Consequently, the usual conflict between the conductivity and mechanical properties of GPEs is alleviated to some extent. In addition, the electrode specific capacitance and the energy density of the assembled supercapacitor are obviously improved because of the pseudocapacitance generated from the redox reaction of K3[Fe(CN)]6. Based on this GPE, the supercapacitor exhibits outstanding bending and stretching stabilities, significant self-healing, and anti-freezing properties. Therefore, the prepared GPE and supercapacitor are promising for application in flexible and wearable electronic equipment with complex service conditions.

摘要

超级电容器的韧性、自修复和高比电容对于柔性和可穿戴电子设备具有重要的实用价值. 为此, 我们制备了一种新型的聚乙烯醇-海藻酸钠-铁氰化钾-硫酸钠多功能凝胶聚合物电解质. 其中铁氰化钾起到了三角色作用, 包括载流子供体、离子交联剂和氧化还原活性剂, 有效地缓解了凝胶聚合物电解质通常存在的电导率与机械性能间的矛盾. 此外, 由于铁氰化钾的氧化还原反应提供了赝电容, 组装的超级电容器具有很高的电极比电容和能量密度. 该超级电容器还表现出优异的弯曲、拉伸、自修复和抗冻能力. 因而, 制备的凝胶聚合物电解质和超级电容器在复杂使用条件下的柔性和可穿戴电子设备中具有广阔的应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu C, An J, Zhou R, et al. Microstructure design of carbonaceous fibers: A promising strategy toward high-performance weaveable/wearable supercapacitors. Small, 2020, 16: 2000653

    Article  CAS  Google Scholar 

  2. Yuan Y, Zhang Z, Li X, et al. Bottom-up scalable temporally-shaped femtosecond laser deposition of hierarchical porous carbon for ultra-high-rate micro-supercapacitor. Sci China Mater, 2022, 65: 2412–2420

    Article  CAS  Google Scholar 

  3. Li H, Lv T, Sun H, et al. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nat Commun, 2019, 10: 536

    Article  CAS  Google Scholar 

  4. Yuan F, Gao G, Jiang X, et al. Suppressing the metal-metal interaction by CoZn05VL5O4 derived from two-dimensional metal-organic frameworks for supercapacitors. Sci China Mater, 2022, 65: 105–114

    Article  CAS  Google Scholar 

  5. Xu H, Yao Z, Gong Y, et al. Designing tubular architectures composed of hollow N-doped carbon polyhedrons for improved supercapacitance. Adv Mater Interfaces, 2021, 8: 2100805

    Article  CAS  Google Scholar 

  6. Wang Y, Chen F, Liu Z, et al. A highly elastic and reversibly stretchable all-polymer supercapacitor. Angew Chem, 2019, 131: 15854–15858

    Article  Google Scholar 

  7. Ghoniem E, Mori S, Abdel-Moniem A. An efficient strategy for transferring carbon nanowalls film to flexible substrate for supercapacitor application. J Power Sources, 2021, 493: 229684

    Article  CAS  Google Scholar 

  8. Wang M, Fan L, Qin G, et al. Flexible and low temperature resistant semi-IPN network gel polymer electrolyte membrane and its application in supercapacitor. J Membrane Sci, 2020, 597: 117740

    Article  CAS  Google Scholar 

  9. Yang J, Yu X, Sun X, et al. Polyaniline-decorated supramolecular hydrogel with tough, fatigue-resistant, and self-healable performances for all-in-one flexible supercapacitors. ACS Appl Mater Interfaces, 2020, 12: 9736–9745

    Article  CAS  Google Scholar 

  10. Yu C, Xu H, Zhao X, et al. Scalable preparation of high performance fibrous electrodes with bio-inspired compact core-fluffy sheath structure for wearable supercapacitors. Carbon, 2020, 157: 106–112

    Article  CAS  Google Scholar 

  11. Zhu K, Han X, Ye S, et al. Flexible all-in-one supercapacitors enabled by self-healing and anti-freezing polymer hydrogel electrolyte. J Energy Storage, 2022, 53: 105096

    Article  Google Scholar 

  12. Chen F, Chen Q, Zhu L, et al. General strategy to fabricate strong and tough low-molecular-weight gelator-based supramolecular hydrogels with double network structure. Chem Mater, 2018, 30: 1743–1754

    Article  CAS  Google Scholar 

  13. Wang Q, Liu Z, Tang C, et al. Tough interfacial adhesion of bilayer hydrogels with integrated shape memory and elastic properties for controlled shape deformation. ACS Appl Mater Interfaces, 2021, 13: 10457–10466

    Article  CAS  Google Scholar 

  14. Li H, Lv T, Li N, et al. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity. Nanoscale, 2017, 9: 18474–18481

    Article  CAS  Google Scholar 

  15. Ren Y, Sun C, Liu Y, et al. In situ deposited multilayer integrated hydrogels for deformable and stretchable supercapacitors. Sci China Mater, 2022, 65: 373–382

    Article  CAS  Google Scholar 

  16. Yu HC, Zheng SY, Fang L, et al. Reversibly transforming a highly swollen polyelectrolyte hydrogel to an extremely tough one and its application as a tubular grasper. Adv Mater, 2020, 32: 2005171

    Article  CAS  Google Scholar 

  17. Jang H, Park YH, Kim MH, et al. Surface characteristics of porous carbon derived from genetically designed transgenic hybrid poplar for electric double-layer capacitors. Appl Surf Sci, 2021, 545: 148978

    Article  CAS  Google Scholar 

  18. Allagui A, Fouda ME. Inverse problem of reconstructing the capacitance of electric double-layer capacitors. Electrochim Acta, 2021, 390: 138848

    Article  CAS  Google Scholar 

  19. Yadav N, Yadav N, Hashmi SA. High-energy-density carbon supercapacitors incorporating a plastic-crystal-based nonaqueous redox-active gel polymer electrolyte. ACS Appl Energy Mater, 2021, 4: 6635–6649

    Article  CAS  Google Scholar 

  20. Park Y, Choi H, Kim MC, et al. Effect of ionic conductivity in polymergel electrolytes containing iodine-based redox mediators for efficient, flexible energy storage systems. J Industrial Eng Chem, 2021, 94: 384–389

    Article  CAS  Google Scholar 

  21. Das AK, Shankar EG, Ramulu B, et al. Electrochemical performance of asymmetric supercapacitor with binder-free CoxMn3−xSe4 and radish-derived carbon electrodes using K3[Fe(CN)6] additive in electrolyte. Chem Eng J, 2022, 448: 137725

    Article  Google Scholar 

  22. Fan LQ, Geng CL, Wang YL, et al. Design of a redox-active “water-in-salt” hydrogel polymer electrolyte for superior-performance quasi-solid-state supercapacitors. New J Chem, 2020, 44: 17070–17078

    Article  CAS  Google Scholar 

  23. Jinisha B, Anilkumar KM, Manoj M, et al. Solid-state supercapacitor with impressive performance characteristics, assembled using redox-mediated gel polymer electrolyte. J Solid State Electrochem, 2019, 23: 3343–3353

    Article  CAS  Google Scholar 

  24. Hyeon SE, Seo JY, Bae JW, et al. Faradaic reaction of dual-redox additive in zwitterionic gel electrolyte boosts the performance of flexible supercapacitors. Electrochim Acta, 2019, 319: 672–681

    Article  CAS  Google Scholar 

  25. Xun Z, Liu Y, Gu J, et al. A biomass-based redox gel polymer electrolyte for improving energy density of flexible supercapacitor. J Electrochem Soc, 2019, 166: A2300–A2312

    Article  CAS  Google Scholar 

  26. Chen X, Wu X, Guo H, et al. Improvement of capacitance activity for Cu-doped Ni-based metal-organic frameworks by adding potassium hexacyanoferrate into KOH electrolyte. Appl Organomet Chem, 2019, 33: e5193

    Article  CAS  Google Scholar 

  27. Xue Q, Sun J, Huang Y, et al. Recent progress on flexible and wearable supercapacitors. Small, 2017, 13: 1701827

    Article  Google Scholar 

  28. Liu Z, Liang G, Zhan Y, et al. A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy, 2019, 58: 732–742

    Article  CAS  Google Scholar 

  29. Kuzminova AI, Dmitrenko ME, Poloneeva DY, et al. Sustainable composite pervaporation membranes based on sodium alginate modified by metal organic frameworks for dehydration of isopropanol. J Membrane Sci, 2021, 626: 119194

    Article  CAS  Google Scholar 

  30. Jiang X, Xiang N, Zhang H, et al. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydrate Polyms, 2018, 186: 377–383

    Article  CAS  Google Scholar 

  31. Zou Q, Tian X, Luo S, et al. Agarose composite hydrogel and PVA sacrificial materials for bioprinting large-scale, personalized face-like with nutrient networks. Carbohydrate Polyms, 2021, 269: 118222

    Article  CAS  Google Scholar 

  32. Wu L, Li L, Pan L, et al. MWCNTs reinforced conductive, self-healing polyvinyl alcohol/carboxymethyl chitosan/oxidized sodium alginate hydrogel as the strain sensor. J Appl Polym Sci, 2020, 138: 49800

    Article  Google Scholar 

  33. Hu X, Fan L, Qin G, et al. Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor. J Power Sources, 2019, 414: 201–209

    Article  CAS  Google Scholar 

  34. Qin G, Wang M, Fan L, et al. Multifunctional supramolecular gel polymer electrolyte for self-healable and cold-resistant supercapacitor. J Power Sources, 2020, 474: 228602

    Article  CAS  Google Scholar 

  35. Zhang X, Zhu M, Ouyang T, et al. NiFe2O4 nanocubes anchored on reduced graphene oxide cryogel to achieve a 1.8 V flexible solid-state symmetric supercapacitor. Chem Eng J, 2019, 360: 171–179

    Article  CAS  Google Scholar 

  36. Cevik E, Gunday ST, Bozkurt A, et al. Bio-inspired redox mediated electrolyte for high performance flexible supercapacitor applications over broad temperature domain. J Power Sources, 2020, 474: 228544

    Article  CAS  Google Scholar 

  37. Das B, Chattopadhyay D, Rana D. The gamut of perspectives, challenges, and recent trends for in situ hydrogels: A smart ophthalmic drug delivery vehicle. Biomater Sci, 2020, 8: 4665–4691

    Article  CAS  Google Scholar 

  38. Roquero DM, Bollella P, Katz E, et al. Controlling porosity of calcium alginate hydrogels by interpenetrating polyvinyl alcohol-diboronate polymer network. ACS Appl Polym Mater, 2021, 3: 1499–1507

    Article  Google Scholar 

  39. Li X, Xu D, Wang H, et al. Programmed transformations of strong polyvinyl alcohol/sodium alginate hydrogels via ionic crosslink lithography. Macromol Rapid Commun, 2020, 41: 2000127

    Article  CAS  Google Scholar 

  40. Yu Y, Zhang G, Ye L. Preparation and adsorption mechanism of polyvinyl alcohol/graphene oxide-sodium alginate nanocomposite hydrogel with high Pb(II) adsorption capacity. J Appl Polym Sci, 2019, 136: 47318

    Article  Google Scholar 

  41. Lee Y, Kim YH, An JH, et al. Ionic conduction mechanisms in 70Li2S30P2S5 type electrolytes: Experimental and atomic simulation studies. Acta Mater, 2022, 235: 118106

    Article  CAS  Google Scholar 

  42. Zakaria Z, Kamarudin SK. Influence of quaternization and polymer blending modification on the mechanical stability, ionic conductivity and fuel barrier of sodium alginate-based membranes for passive DEFCs. Mater Lett, 2020, 279: 128517

    Article  CAS  Google Scholar 

  43. Ma P, Xiao C, Li L, et al. Facile preparation of ferromagnetic alginate-g-poly(vinyl alcohol) microparticles. Eur Polym J, 2008, 44: 3886–3889

    Article  CAS  Google Scholar 

  44. Yang J, Kang Q, Zhang B, et al. Strong, tough, anti-freezing, non-drying and sensitive ionic sensor based on fully physical cross-linked double network hydrogel. Mater Sci Eng-C, 2021, 130: 112452

    Article  CAS  Google Scholar 

  45. Zhao W, Liu H, Duan L, et al. Tough hydrogel based on covalent crosslinking and ionic coordination from ferric iron and negative carboxylic groups. Eur Polym J, 2018, 106: 297–304

    Article  CAS  Google Scholar 

  46. Ma G, Li J, Sun K, et al. High performance solid-state supercapacitor with PVA-KOH-K3[Fe(CN)6] gel polymer as electrolyte and separator. J Power Sources, 2014, 256: 281–287

    Article  CAS  Google Scholar 

  47. Bialik-Wąs K, Pluta K, Malina D, et al. Advanced SA/PVA-based hydrogel matrices with prolonged release of aloe vera as promising wound dressings. Mater Sci Eng-C, 2021, 120: 111667

    Article  Google Scholar 

  48. Kang M, Liu S, Oderinde O, et al. Template method for dual network self-healing hydrogel with conductive property. Mater Des, 2018, 148: 96–103

    Article  CAS  Google Scholar 

  49. Zhang S, Han D, Ding Z, et al. Fabrication and characterization of one interpenetrating network hydrogel based on sodium alginate and polyvinyl alcohol. J Wuhan Univ Technol-Mat Sci Edit, 2019, 34: 744–751

    Article  CAS  Google Scholar 

  50. Ding K, Qu R, Han J, et al. Unexpected facilitation of the pyrolysis products of potassium ferrocyanide to the electrocatalytic activity of a PdO based palladium iron composite catalyst towards ethanol oxidation reaction (EOR). Int J Hydrogen Energy, 2021, 46: 633–644

    Article  CAS  Google Scholar 

  51. Lee J, Choudhury S, Weingarth D, et al. High performance hybrid energy storage with potassium ferricyanide redox electrolyte. ACS Appl Mater Interfaces, 2016, 8: 23676–23687

    Article  CAS  Google Scholar 

  52. Sundriyal S, Shrivastav V, Sharma M, et al. Redox additive electrolyte study of Mn-MOF electrode for supercapacitor applications. ChemistrySelect, 2019, 4: 2585–2592

    Article  CAS  Google Scholar 

  53. Jin X, Sun G, Zhang G, et al. A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res, 2019, 12: 1199–1206

    Article  CAS  Google Scholar 

  54. Yang W, Li L, Zhang B, et al. Optimization and preparation of a gel polymer electrolyte membrane for supercapacitors. Chem Eng Technol, 2021, 44: 449–456

    Article  CAS  Google Scholar 

  55. Tu QM, Fan LQ, Pan F, et al. Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors. Electrochim Acta, 2018, 268: 562–568

    Article  CAS  Google Scholar 

  56. Mo F, Li Q, Liang G, et al. A self-healing crease-free supramolecular allpolymer supercapacitor. Adv Sci, 2021, 8: 2100072

    Article  CAS  Google Scholar 

  57. Xia L, Huang L, Qing Y, et al. In situ filling of a robust carbon sponge with hydrogel electrolyte: A type of omni-healable electrode for flexible supercapacitors. J Mater Chem A, 2020, 8: 7746–7755

    Article  CAS  Google Scholar 

  58. Liu J, Khanam Z, Ahmed S, et al. A study of low-temperature solidstate supercapacitors based on Al-ion conducting polymer electrolyte and graphene electrodes. J Power Sources, 2021, 488: 229461

    Article  CAS  Google Scholar 

  59. Yao B, Peng H, Zhang H, et al. Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett, 2021, 21: 3731–3737

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Foundation for Excellent Youth of Henan Province (202300410166), the Science and Technology Project of Henan Province (212102210201 and 212102310015), China Postdoctoral Science Foundation (2020M672179), the Key Project of Science and Technology Research of Henan Provincial Department of Education (21A430017), the Training Program for Young Backbone Teachers in the University of Henan Province (2020GGJS052), and the Major Project of WIUCAS (WIUCASQD2021004 and WIUCASQD2021035).

Author information

Authors and Affiliations

Authors

Contributions

Yang J and Wang M analyzed the data and wrote the paper. Chen T and Fang X performed the experiments and analyzed the data. Su X measured the properties. Qin G analyzed the data. Yu X and Chen Q conceived and designed the experiments.

Corresponding authors

Correspondence to Xiang Yu  (于翔), Gang Qin  (秦刚) or Qiang Chen  (陈强).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Supporting data are available in the online version of the paper.

Xiang Yu is a professor of the School of Materials Engineering at Henan University of Engineering. He received a BS degree from Nanjing Forestry University in 2007 and a PhD degree from Zhengzhou University in 2010. His research focuses on functional hydrogels and polymer crystallization.

Qiang Chen is a professor at Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS). He received a BS degree from Henan University in 2004 and a PhD degree from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 2009. He was a lecturer (2009), and promoted as an associated professor (2012) and a full professor (2019) at Henan Polytechnic University. In 2021, he joined WIUCAS. His current research mainly focuses on the development of functional tough hydrogels and their interfacial applications.

Supporting Information for

40843_2022_2327_MOESM1_ESM.pdf

Tough, self-healable, antifreezing and redox-mediated gel polymer electrolyte with three-role K3[Fe(CN)]6 for wearable flexible supercapacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, M., Chen, T. et al. Tough, self-healable, antifreezing and redox-mediated gel polymer electrolyte with three-role K3[Fe(CN)]6 for wearable flexible supercapacitors. Sci. China Mater. 66, 1779–1792 (2023). https://doi.org/10.1007/s40843-022-2327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2327-3

Keywords

Navigation