Skip to main content
Log in

Bottom-up scalable temporally-shaped femtosecond laser deposition of hierarchical porous carbon for ultrahigh-rate micro-supercapacitor

利用时域整形的飞秒激光自下而上沉积多级多孔碳 材料用于超高速率微型超级电容器

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

With the accelerated development of electronic devices, micro-supercapacitors (MSCs), as energy storage devices that can charge and discharge quickly, have attracted considerable attention. To improve the rate capability of MSCs with consideration of the energy density remains a challenge. We demonstrated a facile method for the preparation of thin films through bottom-up femtosecond pulsed laser deposition. The femtosecond laser irradiated the polyimide film through a transparent substrate to uniformly sputter the electrode material onto the lower surface of the substrate. We successfully deposited porous amorphous carbon, graphene, and carbon quantum dots with controllable properties by temporally shaping the femtosecond laser. The resulting MSC exhibited an ultrahigh frequency response and good performance at scan rates up to 10,000 V s−1. The characteristic frequency f0 of the MSC was as high as 42,000 Hz, and the relaxation time constant τ0 was 0.0238 ms. The MSC reached an impedance phase angle of −82.6° at a frequency of 120 Hz, an ultrahigh power density of more than 30 kW cm−3, and an energy density of 0.068 W h cm−3. This method provides a novel perspective for the preparation of ultrahigh frequency filters for future miniaturized portable electronic devices.

摘要

随着电子器件的飞速发展, 微型超级电容器作为一种能快速充 放电的储能装置受到了人们的广泛关注. 如何在考虑能量密度的前提 下进一步提高微型超级电容器的速率性能仍然是一个挑战. 我们提出 了一种简便的由下而上飞秒脉冲激光沉积制备薄膜的方法. 利用时域 整形飞秒激光通过透明基片照射聚酰亚胺薄膜, 使电极材料均匀地溅 射到基片的下表面, 成功地沉积了性能可控的多孔非晶碳、石墨烯和 碳量子点. 结果表明, 在10,000 V s−1的扫描速率下, 该微型超级电容器 具有超高频响应性能. 该微型超级电容器的特征频率f0高达42,000 Hz, 弛豫时间常数τ0为0.0238 ms, 在120 Hz频率下, 阻抗相位角为−82.6°, 同时还具有超高的功率密度(大于3 0 kW c m−3) 和能量密度 (0.068 W h cm−3). 本方法为未来小型化便携式电子器件的超高频滤波 器的制备提供了新的思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Kady MF, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 2012, 335: 1326–1330

    Article  CAS  Google Scholar 

  2. Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotech, 2010, 5: 651–654

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science, 2014, 343: 1210–1211

    Article  CAS  Google Scholar 

  4. Lin J, Zhang C, Yan Z, et al. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett, 2013, 13: 72–78

    Article  CAS  Google Scholar 

  5. Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci, 2014, 7: 867

    Article  CAS  Google Scholar 

  6. Fan Z, Islam N, Bayne SB. Towards kilohertz electrochemical capacitors for filtering and pulse energy harvesting. Nano Energy, 2017, 39: 306–320

    Article  CAS  Google Scholar 

  7. Miller JR, Outlaw RA, Holloway BC. Graphene double-layer capacitor with AC line-filtering performance. Science, 2010, 329: 1637–1639

    Article  CAS  Google Scholar 

  8. Chi F, Li C, Zhou Q, et al. Graphene-based organic electrochemical capacitors for AC line filtering. Adv Energy Mater, 2017, 7: 1700591

    Article  CAS  Google Scholar 

  9. Li J, Harter AK, Liu J, et al. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat Commun, 2019, 10: 855

    Article  Google Scholar 

  10. Huang L, Dai L. On-chip microsupercapacitors based on coordination polymer frameworks for alternating current line-filtering. Angew Chem Int Ed, 2017, 56: 6381–6383

    Article  CAS  Google Scholar 

  11. Yang C, Schellhammer KS, Ortmann F, et al. Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance. Angew Chem Int Ed, 2017, 56: 3920–3924

    Article  CAS  Google Scholar 

  12. Zhang C, Du H, Ma K, et al. Ultrahigh-rate supercapacitor based on carbon nano-onion/graphene hybrid structure toward compact alternating current filter. Adv Energy Mater, 2020, 10: 2002132

    Article  CAS  Google Scholar 

  13. Zhang Z, Xiao F, Qian L, et al. Facile synthesis of 3D MnO2-graphene and carbon nanotube-graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv Energy Mater, 2014, 4: 1400064

    Article  CAS  Google Scholar 

  14. Lin J, Peng Z, Liu Y, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun, 2014, 5: 5714

    Article  CAS  Google Scholar 

  15. Premathilake D, Outlaw RA, Parler SG, et al. Electric double layer capacitors for AC filtering made from vertically oriented graphene nanosheets on aluminum. Carbon, 2017, 111: 231–237

    Article  CAS  Google Scholar 

  16. Tang J, Zhang L, Zhong X, et al. A laser synthesis of vanadium oxide bonded graphene for high-rate supercapacitors. J Energy Chem, 2020, 49: 174–178

    Article  Google Scholar 

  17. Ren G, Pan X, Bayne S, et al. Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon, 2014, 71: 94–101

    Article  CAS  Google Scholar 

  18. Gao H, Li J, Miller JR, et al. Solid-state electric double layer capacitors for AC line-filtering. Energy Storage Mater, 2016, 4: 66–70

    Article  Google Scholar 

  19. Li Q, Sun S, Smith AD, et al. Compact and low loss electrochemical capacitors using a graphite/carbon nanotube hybrid material for miniaturized systems. J Power Sources, 2019, 412: 374–383

    Article  CAS  Google Scholar 

  20. Kumar S, Nehra M, Kedia D, et al. Carbon nanotubes: A potential material for energy conversion and storage. Prog Energy Combust Sci, 2018, 64: 219–253

    Article  Google Scholar 

  21. Joseph J, Paravannoor A, Nair SV, et al. Supercapacitors based on camphor-derived meso/macroporous carbon sponge electrodes with ultrafast frequency response for AC line-filtering. J Mater Chem A, 2015, 3: 14105–14108

    Article  CAS  Google Scholar 

  22. Ji N, Park J, Kim W. CMK-5-based high energy density electrical double layer capacitor for AC line filtering. ACS Omega, 2019, 4: 18900–18907

    Article  CAS  Google Scholar 

  23. Yoo Y, Kim MS, Kim JK, et al. Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for AC line filtering. J Mater Chem A, 2016, 4: 5062–5068

    Article  CAS  Google Scholar 

  24. Frackowiak E, Abbas Q, Béguin F. Carbon/carbon supercapacitors. J Energy Chem, 2013, 22: 226–240

    Article  CAS  Google Scholar 

  25. Yoo Y, Park J, Kim MS, et al. Development of 2.8 V Ketjen black supercapacitors with high rate capabilities for AC line filtering. J Power Sources, 2017, 360: 383–390

    Article  CAS  Google Scholar 

  26. Premathilake D, Outlaw RA, Quinlan RA, et al. Fast response, carbon-black-coated, vertically-oriented graphene electric double layer capacitors. J Electrochem Soc, 2018, 165: A924–A931

    Article  CAS  Google Scholar 

  27. Yoo Y, Kim S, Kim B, et al. 2.5 V compact supercapacitors based on ultrathin carbon nanotube films for AC line filtering. J Mater Chem A, 2015, 3: 11801–11806

    Article  CAS  Google Scholar 

  28. Zhang W, Lei Y, Jiang Q, et al. 3D laser scribed graphene derived from carbon nanospheres: An ultrahigh-power electrode for supercapacitors. Small Methods, 2019, 3: 1900005

    Article  CAS  Google Scholar 

  29. Strauss V, Marsh K, Kowal MD, et al. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv Mater, 2018, 30: 1704449

    Article  CAS  Google Scholar 

  30. Lukatskaya MR, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun, 2016, 7: 12647

    Article  Google Scholar 

  31. Yao JD, Zheng ZQ, Yang GW. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog Mater Sci, 2019, 106: 100573

    Article  CAS  Google Scholar 

  32. De Bonis A, Teghil R. Ultra-short pulsed laser deposition of oxides, borides and carbides of transition elements. Coatings, 2020, 10: 501

    Article  CAS  Google Scholar 

  33. Fenech M, Sharma N. Pulsed laser deposition-based thin film microbatteries. Chem Asian J, 2020, 15: 1829–1847

    Article  CAS  Google Scholar 

  34. Chyan Y, Ye R, Li Y, et al. Laser-induced graphene by multiple lasing: Toward electronics on cloth, paper, and food. ACS Nano, 2018, 12: 2176–2183

    Article  CAS  Google Scholar 

  35. In JB, Hsia B, Yoo JH, et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon, 2015, 83: 144–151

    Article  CAS  Google Scholar 

  36. Jiang L, Wang AD, Li B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: Modeling, method, measurement and application. Light Sci Appl, 2018, 7: 17134

    Article  CAS  Google Scholar 

  37. Zuo P, Jiang L, Li X, et al. Shape-controllable gold nanoparticle-MoS2 hybrids prepared by tuning edge-active sites and surface structures of MoS2via temporally shaped femtosecond pulses. ACS Appl Mater Interfaces, 2017, 9: 7447–7455

    Article  CAS  Google Scholar 

  38. Zuo P, Jiang L, Li X, et al. Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS2 defect sites for photoluminescence control and SERS enhancement. Nanoscale, 2019, 11: 485–494

    Article  CAS  Google Scholar 

  39. Gao W, Singh N, Song L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotech, 2011, 6: 496–500

    Article  CAS  Google Scholar 

  40. Gao J, Shao C, Shao S, et al. Laser-assisted multiscale fabrication of configuration-editable supercapacitors with high energy density. ACS Nano, 2019, 13: 7463–7470

    Article  CAS  Google Scholar 

  41. Yuan Y, Jiang L, Li X, et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun, 2020, 11: 6185

    Article  CAS  Google Scholar 

  42. Xu C, Jiang L, Li X, et al. Miniaturized high-performance metallic 1T-phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses. Nano Energy, 2020, 67: 104260

    Article  CAS  Google Scholar 

  43. Cai J, Lv C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J Mater Chem A, 2016, 4: 1671–1679

    Article  CAS  Google Scholar 

  44. Li RZ, Peng R, Kihm KD, et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ Sci, 2016, 9: 1458–1467

    Article  CAS  Google Scholar 

  45. Rahimi R, Ochoa M, Yu W, et al. Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl Mater Interfaces, 2015, 7: 4463–4470

    Article  CAS  Google Scholar 

  46. Shi X, Zhou F, Peng J, et al. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity. Adv Funct Mater, 2019, 29: 1902860

    Article  CAS  Google Scholar 

  47. Das A, Chakraborty B, Sood AK. Raman spectroscopy of graphene on different substrates and influence of defects. Bull Mater Sci, 2008, 31: 579–584

    Article  CAS  Google Scholar 

  48. Peng Z, Ye R, Mann JA, et al. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano, 2015, 9: 5868–5875

    Article  CAS  Google Scholar 

  49. Cai J, Lv C, Hu C, et al. Laser direct writing of heteroatom-doped porous carbon for high-performance micro-supercapacitors. Energy Storage Mater, 2020, 25: 404–415

    Article  Google Scholar 

  50. Kim DK, Kim ND, Park SK, et al. Nitrogen doped carbon derived from polyimide/multiwall carbon nanotube composites for high performance flexible all-solid-state supercapacitors. J Power Sources, 2018, 380: 55–63

    Article  CAS  Google Scholar 

  51. Wu ZS, Liu Z, Parvez K, et al. Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv Mater, 2015, 27: 3669–3675

    Article  CAS  Google Scholar 

  52. Yang X, Zhu J, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv Mater, 2011, 23: 2833–2838

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Outstanding Youth Science Foundation of China (51922005) and the National Natural Science Foundation of China (51775047 and 52105427).

Author information

Authors and Affiliations

Authors

Contributions

Yuan Y and Zhang Z conceived the idea of this study and wrote the paper; Li X, Jiang L, Zhang X, and Ma L contributed to the data analyses and manuscript preparation; Xu C, Zuo P, Wang S, Zhao Y and Qu L contributed to the experimental planning, data analyses, and manuscript preparation. All authors contributed to the general discussion.

Corresponding author

Correspondence to Lan Jiang  (姜澜).

Additional information

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Yongjiu Yuan is a PhD candidate at the School of Mechanical Engineering, Beijing Institute of Technology, under the supervision of Prof. Lan Jiang. His current research focuses on the design of laser-induced nanomaterials and the fabrication of high-performance devices for energy storage.

Zihao Zhang received his ME degree from Beijing Institute of Technology in 2021. His research focuses on applied research of energy conversion.

Lan Jiang is a professor at the School of Mechanical Engineering, Beijing Institute of Technology. He received his PhD degree from Beijing Institute of Technology in 2000. His research interests include laser micro-nano manufacturing and laser-induced synthetic materials for energy storage.

Supplementary Information

40843_2021_2011_MOESM1_ESM.pdf

Bottom-up scalable temporally-shaped femtosecond laser deposition of hierarchical porous carbon for ultrahigh-rate micro-supercapacitor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Zhang, Z., Li, X. et al. Bottom-up scalable temporally-shaped femtosecond laser deposition of hierarchical porous carbon for ultrahigh-rate micro-supercapacitor. Sci. China Mater. 65, 2412–2420 (2022). https://doi.org/10.1007/s40843-021-2011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-2011-7

Keywords

Navigation