Skip to main content
Log in

A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength

一种低密度耐高温高比强度多层次结构双相高熵合金

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

A high-entropy dual-phase AlTiVCoNi alloy with a low density of ∼6.24 g cm−3 is developed, and it consists of a hierarchical structure, including an ordered L21 phase, a disordered body-centered-cubic (BCC) solid-solution phase, and nano-sized L21 precipitates embedded in the BCC phase. It is found that this new alloy shows phase stability after the heat treatment at 1200°C for 24 h, and the compressive yield strength of this annealed alloy is approximately equal to that of the as-cast condition, ∼1.6 GPa. This alloy displays an exceptional compressive strength at room temperature and at 600°C, with the specific yield strengths of ∼261 and ∼210 MPa g−1 cm3, respectively. The semi-coherent interface of the L21 and the BCC phases makes the alloy phase stable and regulates the work-hardening mechanism. Local dynamic-recrystallization behavior and grain evolution are observed in the as-prepared alloy during compression at 800 and 1000°C, which results in the high-temperature softening. This alloy with a muti-phase hierarchical structure would provide a new paradigm for the development of next-generation low-density, high-entropy structural materials for high-temperature applications.

摘要

本文研究了一种新型低密度(~6.24 g cm−3)双相AlTiVCoNi高熵合金, 其组织结构由有序L21 高熵金属间化合物、无序体心立方结构和纳米L21 相多层次结构构成. 该合金在1200°C + 24 h热处理下未发生相结构转变, 在此条件下具有优异的高温相结构稳定性, 其铸态和热处理态的压缩屈服强度相当, 达到~1.6 GPa. 另外, 该合金在室温和600°C条件下表现出了优异的强塑性匹配和优异的比屈服强度, 分别达到了约261和210 MPa g−1cm3. 该合金的超高强度主要源于有序L21 相与体心立方相的半共格界面导致的一种强相结构稳定性和多层次结构的复合强化机制. 该合金在800和1000°C压缩过程中出现了动态再结晶软化,使得其高温强度有所降低. 这种“具有半共格界面L21 + 体心立方+ 纳米L21颗粒”的多层次结构设计为开发新型低密度耐高温高熵合金提供了一种新设计思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    Article  CAS  Google Scholar 

  2. Yao Y, Huang Z, Xie P, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359: 1489–1494

    Article  CAS  Google Scholar 

  3. Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563: 546–550

    Article  CAS  Google Scholar 

  4. Shi P, Li R, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373: 912–918

    Article  CAS  Google Scholar 

  5. Pan Q, Zhang L, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility. Science, 2021, 374: 984–989

    Article  CAS  Google Scholar 

  6. Lu Y, Huang H, Gao X, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J Mater Sci Tech, 2019, 35: 369–373

    Article  CAS  Google Scholar 

  7. Wu Y, Liaw P, Zhang Y. Preparation of bulk TiZrNbMoV and NbTiAlTaV high-entropy alloys by powder sintering. Metals, 2021, 11: 1748

    Article  CAS  Google Scholar 

  8. Feng R, Zhang C, Gao MC, et al. High-throughput design of high-performance lightweight high-entropy alloys. Nat Commun, 2021, 12: 4329

    Article  CAS  Google Scholar 

  9. Wang M, Lu Y, Wang T, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures. Scripta Mater, 2021, 204: 114132

    Article  CAS  Google Scholar 

  10. Varma SK, Sanchez F, Moncayo S, et al. Static and cyclic oxidation of Nb-Cr-V-W-Ta high entropy alloy in air from 600 to 1400°C. J Mater Sci Tech, 2020, 38: 189–196

    Article  CAS  Google Scholar 

  11. Zhang W, Liaw PK, Zhang Y. Science and technology in high-entropy alloys. Sci China Mater, 2018, 61: 2–22

    Article  CAS  Google Scholar 

  12. Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93

    Article  Google Scholar 

  13. Tsai MH, Yeh JW. High-entropy alloys: A critical review. Mater Res Lett, 2014, 2: 107–123

    Article  Google Scholar 

  14. China-Aeronautical-Materials-Handbook-Editorial-Board. China Aeronautical Materials Handbook Second edition -Volume (2). Beijing, China: Standards Press of China, 2001, 874

    Google Scholar 

  15. Li R, Gao JC, Fan K. Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions. MSF, 2011, 686: 235–241

    Article  CAS  Google Scholar 

  16. Li R, Gao JC, Fan K. Study to microstructure and mechanical properties of Mg containing high entropy alloys. MSF, 2010, 650: 265–271

    Article  CAS  Google Scholar 

  17. Yang X, Chen SY, Cotton JD, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. JOM, 2014, 66: 2009–2020

    Article  CAS  Google Scholar 

  18. Shao L, Zhang T, Li L, et al. A low-cost lightweight entropic alloy with high strength. J Materi Eng Perform, 2018, 27: 6648–6656

    Article  CAS  Google Scholar 

  19. Li Y, Li R, Zhang Y. Effects of Si addition on microstructure, properties and serration behaviors of lightweight Al-Mg-Zn-Cu medium-entropy alloys. Res Appl Mater Sci, 2019, 1: 13

    Article  Google Scholar 

  20. Li R, Wang Z, Guo Z, et al. Graded microstructures of Al-Li-Mg-Zn-Cu entropic alloys under supergravity. Sci China Mater, 2019, 62: 736–744

    Article  CAS  Google Scholar 

  21. Li H, Yang C, Fu J, et al. Nano-amorphous-crystalline dual-phase design of Al80Li5Mg5Zn5Cu5 multicomponent alloy. Sci China Mater, 2022, 65: 1671–1678

    Article  CAS  Google Scholar 

  22. Youssef KM, Zaddach AJ, Niu C, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nano-crystalline structures. Mater Res Lett, 2015, 3: 95–99

    Article  CAS  Google Scholar 

  23. Tseng KK, Yang YC, Juan CC, et al. A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Sci China Technol Sci, 2018, 61: 184–188

    Article  CAS  Google Scholar 

  24. Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19: 698–706

    Article  CAS  Google Scholar 

  25. Feng R, Feng B, Gao MC, et al. Superior high-temperature strength in a supersaturated refractory high-entropy alloy. Adv Mater, 2021, 33: 2102401

    Article  CAS  Google Scholar 

  26. Karthick G, Raman L, Murty BS. Phase evolution and mechanical properties of novel nanocrystalline Y2(TiZrHfMoV)2O7 high entropy pyrochlore. J Mater Sci Tech, 2021, 82: 214–226

    Article  CAS  Google Scholar 

  27. Stepanov ND, Shaysultanov DG, Salishchev GA, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater Lett, 2015, 142: 153–155

    Article  CAS  Google Scholar 

  28. Stepanov ND, Yurchenko NY, Sokolovsky VS, et al. An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. Mater Lett, 2015, 161: 136–139

    Article  CAS  Google Scholar 

  29. Xu ZQ, Ma ZL, Wang M, et al. Design of novel low-density refractory high entropy alloys for high-temperature applications. Mater Sci Eng-A, 2019, 755: 318–322

    Article  CAS  Google Scholar 

  30. Qiu Y, Hu YJ, Taylor A, et al. A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Mater, 2017, 123: 115–124

    Article  CAS  Google Scholar 

  31. Qiu Y, Thomas S, Gibson MA, et al. Microstructure and corrosion properties of the low-density single-phase compositionally complex alloy AlTiVCr. Corrosion Sci, 2018, 133: 386–396

    Article  CAS  Google Scholar 

  32. Li Y, Liaw PK, Zhang Y. Microstructures and properties of the low-density Al15Zr40Ti28Nb12M(Cr,Mo,Si)5 high-entropy alloys. Metals, 2022, 12: 496

    Article  Google Scholar 

  33. Tan XR, Zhao RF, Ren B, et al. Effects of hot pressing temperature on microstructure, hardness and corrosion resistance of Al2NbTi3V2Zr high-entropy alloy. Mater Sci Tech, 2016, 32: 1582–1591

    Article  CAS  Google Scholar 

  34. Yao H, Liu Y, Sun X, et al. Microstructure and mechanical properties of Ti3V2NbAlxNiy low-density refractory multielement alloys. Intermetallics, 2021, 133: 107187

    Article  CAS  Google Scholar 

  35. Pang J, Zhang H, Zhang L, et al. Ductile Ti1.5ZrNbAl0.3 refractory high entropy alloy with high specific strength. Mater Lett, 2021, 290: 129428

    Article  CAS  Google Scholar 

  36. Senkov ON, Senkova SV, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis Acta Mater, 2013, 61: 1545–1557

    Article  CAS  Google Scholar 

  37. Senkov ON, Senkova SV, Miracle DB, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system Mater Sci Eng-A, 2013, 565: 51–62

    Article  CAS  Google Scholar 

  38. Feng R, Gao M, Lee C, et al. Design of light-weight high-entropy alloys Entropy, 2016, 18: 333

    Article  Google Scholar 

  39. Feng R, Gao MC, Zhang C, et al. Phase stability and transformation in a light-weight high-entropy alloy. Acta Mater, 2018, 146: 280–293

    Article  CAS  Google Scholar 

  40. Xu J, Xia Y, Li Z, et al. Multi-physics instrument: Total scattering neutron time-of-flight diffractometer at China Spallation Neutron Source. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2021, 1013: 165642

    Article  CAS  Google Scholar 

  41. Packard JC. Archimedes principle. School Sci Math, 1929, 29: 969–970

    Article  Google Scholar 

  42. Yan XH, Liaw PK, Zhang Y. Order and disorder in amorphous and high-entropy materials. Metall Mater Trans A, 2021, 52: 2111–2122

    Article  CAS  Google Scholar 

  43. Cao P, Ni X, Tian F, et al. Ab initio study of AlxMoNbTiV high-entropy alloys. J Phys-Condens Matter, 2015, 27: 075401

    Article  CAS  Google Scholar 

  44. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 2005, 46: 2817–2829

    Article  CAS  Google Scholar 

  45. Zhang Y, Zhou Y, Lin J, et al. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater, 2008, 10: 534–538

    Article  CAS  Google Scholar 

  46. Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys, 2011, 109: 103505

    Article  Google Scholar 

  47. Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132: 233–238

    Article  CAS  Google Scholar 

  48. Ye YF, Wang Q, Lu J, et al. The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics, 2015, 59: 75–80

    Article  CAS  Google Scholar 

  49. Ye YF, Wang Q, Lu J, et al. Design of high entropy alloys: A single-parameter thermodynamic rule. Scripta Mater, 2015, 104: 53–55

    Article  CAS  Google Scholar 

  50. Nagase T, Rack PD, Noh JH, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics, 2015, 59: 32–42

    Article  CAS  Google Scholar 

  51. Yeh JW. Recent progress in high-entropy alloys. Ann Chim Sci Mat, 2006, 31: 633–648

    Article  CAS  Google Scholar 

  52. Yan X, Zhang Y. Functional properties and promising applications of high entropy alloys. Scripta Mater, 2020, 187: 188–193

    Article  CAS  Google Scholar 

  53. Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nano-particles and superb mechanical behaviors of complex alloys. Science, 2018, 362: 933–937

    Article  CAS  Google Scholar 

  54. Lütjering G, Williams JC. Titanium (2nd edition). Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2007, 449

    Google Scholar 

  55. Yao K, Liu L, Ren J, et al. High-entropy intermetallic compound with ultra-high strength and thermal stability. Scripta Mater, 2021, 194: 113674

    Article  CAS  Google Scholar 

  56. Zhang Y, Liu JP, Chen SY, et al. Serration and noise behaviors in materials. Prog Mater Sci, 2017, 90: 358–460

    Article  CAS  Google Scholar 

  57. Vegard L. Die konstitution der mischkristalle und die raumfüllung der atome. Z Physik, 1921, 5: 17–26

    Article  CAS  Google Scholar 

  58. Stepanov ND, Yurchenko NY, Panina ES, et al. Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater Lett, 2017, 188: 162–164

    Article  CAS  Google Scholar 

  59. Steingrimsson B, Fan X, Yang X, et al. Predicting temperature-dependent ultimate strengths of body-centered-cubic (BCC) high-entropy alloys npj Comput Mater, 2021, 7: 152

    Article  CAS  Google Scholar 

  60. Jiang S, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation Nature, 2017, 544: 460–464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Zhang Y appreciated the supports from the Fundamental Research Funds for the Central Universities (FRF-MP-19-013), Guangdong Basic and Applied Basic Research Foundation (2019B1515120020), the State Key Laboratory for Advanced Metals and Materials, the University of Science and Technology Beijing (2020Z-08), and the Funds for Creative Research Groups of China (51921001) Liao WB thanked the National Natural Science Foundation of China (51801128), and Guangdong Basic and Applied Basic Research Foundation (2021A1515012278 and 2022A1515010288) He Z appreciated the supports from the National Natural Science Foundation of China (51871015 and 52171151) Liaw PK appreciated the supports from the National Science Foundation (DMR-1611180 and 1809640) with program directors, Drs J Yang, G. Shiflet, and D. Farkas and the US Army Research Office (W911NF-13-1-0438 and W911NF-19-2-0049) with program managers, Drs. M.P. Bakas, S.N. Mathaudhu, and D.M. Stepp.

Author information

Authors and Affiliations

Authors

Contributions

Li Y conducted the experiments and wrote the draft; Liao WB and Zhang Y conceived the idea and directed the whole project. Chen H, Brechtl J, Song W, Yin W, He Z, and Liaw PK provided valuable suggestions. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Wei-Bing Liao  (廖卫兵) or Yong Zhang  (张勇).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Calculation details and supporting data are available in the online version of the paper.

Yasong Li is a PhD student at the State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing (USTB), under Prof. Yong Zhang’s supervision. His research interest is on high-entropy alloys.

Wei-Bing Liao received his PhD degree in materials science and engineering from USTB in 2013. He did postdoctoral work at Peking University from 2013 to 2015, and the City University of Hong Kong from 2015 to 2017. Then, he jointed Shenzhen University as an assistant professor in 2017. His research interest focuses on bulk-metallic glasses and high-entropy alloys.

Yong Zhang has been a professor of materials science at the USTB since 2004. He has published over 200 papers and authored a book entitled “High-Entropy Materials, A Brief Introduction” by Springer-Nature publisher. He proposed a parameter to evaluate the configurational entropy effect over the enthalpy effect in the liquid state. It has been verified to be effective in predicting the phase formation for the multicomponent materials.

Peter K. Liaw obtained his BSc degree in physics from Tsing Hua University, Taiwan, and his PhD degree in materials science and engineering from the Northwestern University, in 1980. After working at Westinghouse Research and Development (R&D) Center for thirteen years, he joined the faculty and became an Endowed Ivan Racheff Chair of Excellence at the Department of Materials Science and Engineering, The University of Tennessee (UT), Knoxville in March 1993. He is working in the areas of fatigue, fracture, nondestructive evaluation, and life-prediction methodologies of structural alloys and composites.

Supplementary material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liao, WB., Chen, H. et al. A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength. Sci. China Mater. 66, 780–792 (2023). https://doi.org/10.1007/s40843-022-2178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2178-x

Keywords

Navigation