Skip to main content
Log in

Multifunctional devices based on planar microsupercapacitors: Progress and challenges

基于平面微型超级电容器的多功能器件: 进展与挑战

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

With the boom of portable, wearable, and implantable smart electronics in the last decade, the demand for multifunctional microscale electrochemical energy storage devices has increased. Owing to their excellent rate performance, high power density, long cycling lifetime, easy fabrication, and integration, multifunctional planar microsupercapacitors (PMSCs) are deemed as one of the ideal micropower sources for next-generation flexible on-chip electronics. Therefore, we offer a comprehensive overview of the recent progress regarding multifunctional devices based on PMSCs, including stretchable, self-healing, stimulus-responsive, thermosensitive, biodegradable, and temperature-tolerant microdevices. We also emphasize the unique applications of multifunctionally integrated PMSCs in the construction of self-powered and sensor-integrated systems in terms of multifunctional operation modes. Finally, the key challenges and future prospects related to these multifunctional devices are discussed to stimulate further research in this flourishing field.

摘要

在过去十年, 随着便携式、可穿戴和可植入智能电子产品的蓬 勃发展, 对多功能微型电化学储能器件的需求不断增加. 由于优异的倍 率性能、高功率密度、长循环寿命、易于制造和集成等特点, 多功能 平面微型超级电容器(PMSCs)被认为是下一代柔性芯片上电子器件的 理想微电源之一. 在这篇综述中, 我们全面概述了基于PMSCs的多功能 器件的最新进展, 包括具有可拉伸性、自愈合性、刺激响应性、热敏 性、可生物降解性以及耐温性的微型器件. 此外, 在多功能运行模式方 面, 还强调了PMSCs多功能性集成在构建自供电集成系统和传感器集 成系统方面的独特应用. 最后, 讨论了关于基于PMSCs的多功能器件目 前存在的主要挑战以及未来前景. 我们希望本综述可以促进这一领域 的深入研究.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607

    Article  CAS  Google Scholar 

  2. Kyeremateng NA, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat Nanotech, 2017, 12: 7–15

    Article  CAS  Google Scholar 

  3. Huang P, Lethien C, Pinaud S, et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science, 2016, 351: 691–695

    Article  CAS  Google Scholar 

  4. Lu Y, Lou Z, Jiang K, et al. Recent progress of self-powered wearable monitoring systems integrated with microsupercapacitors. Mater Today Nano, 2019, 8: 100050

    Article  Google Scholar 

  5. Zheng S, Shi X, Das P, et al. The road towards planar microbatteries and micro-supercapacitors: From 2D to 3D device geometries. Adv Mater, 2019, 31: 1900583

    Article  CAS  Google Scholar 

  6. Jin X, Song L, Dai C, et al. A flexible aqueous zinc-iodine microbattery with unprecedented energy density. Adv Mater, 2022, 34: 2109450

    Article  CAS  Google Scholar 

  7. Lu B, Liu F, Sun G, et al. Compact assembly and programmable integration of supercapacitors. Adv Mater, 2020, 32: 1907005

    Article  CAS  Google Scholar 

  8. Liu Q, Zhang G, Chen N, et al. The first flexible dual-ion microbattery demonstrates superior capacity and ultrahigh energy density: Small and powerful. Adv Funct Mater, 2020, 30: 2002086

    Article  CAS  Google Scholar 

  9. Zhang G, Han Y, Shao C, et al. Processing and manufacturing of graphene-based microsupercapacitors. Mater Chem Front, 2018, 2: 1750–1764

    Article  CAS  Google Scholar 

  10. Sun G, Jin X, Yang H, et al. An aqueous Zn-MnO2 rechargeable microbattery. J Mater Chem A, 2018, 6: 10926–10931

    Article  CAS  Google Scholar 

  11. Zhang P, Wang F, Yang S, et al. Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Mater, 2020, 28: 160–187

    Article  CAS  Google Scholar 

  12. Lu B, Jin X, Han Q, et al. Planar graphene-based micro-supercapacitors. Small, 2021, 17: 2006827

    Article  CAS  Google Scholar 

  13. Chen D, Jiang K, Huang T, et al. Recent advances in fiber supercapacitors: Materials, device configurations, and applications. Adv Mater, 2020, 32: 1901806

    Article  CAS  Google Scholar 

  14. Chen S, Qiu L, Cheng HM. Carbon-based fibers for advanced electrochemical energy storage devices. Chem Rev, 2020, 120: 2811–2878

    Article  CAS  Google Scholar 

  15. Zhai S, Karahan HE, Wang C, et al. 1D supercapacitors for emerging electronics: Current status and future directions. Adv Mater, 2020, 32: 1902387

    Article  CAS  Google Scholar 

  16. Zhu M, Huang Y, Huang Y, et al. A highly durable, transferable, and substrate-versatile high-performance all-polymer micro-supercapacitor with plug-and-play function. Adv Mater, 2017, 29: 1605137

    Article  Google Scholar 

  17. Liu L, Niu Z, Chen J. Design and integration of flexible planar micro-supercapacitors. Nano Res, 2017, 10: 1524–1544

    Article  Google Scholar 

  18. Gu S, Lou Z, Li L, et al. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res, 2016, 9: 424–434

    Article  CAS  Google Scholar 

  19. Heon M, Lofland S, Applegate J, et al. Continuous carbide-derived carbon films with high volumetric capacitance. Energy Environ Sci, 2011, 4: 135–138

    Article  CAS  Google Scholar 

  20. Song B, Li L, Lin Z, et al. Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities. Nano Energy, 2015, 16: 470–478

    Article  CAS  Google Scholar 

  21. Wu ZS, Yang S, Zhang L, et al. Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances. Energy Storage Mater, 2015, 1: 119–126

    Article  Google Scholar 

  22. Yang C, Schellhammer KS, Ortmann F, et al. Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance. Angew Chem Int Ed, 2017, 56: 3920–3924

    Article  CAS  Google Scholar 

  23. Liu S, Xie J, Li H, et al. Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. J Mater Chem A, 2014, 2: 18125–18131

    Article  CAS  Google Scholar 

  24. Wang Y, Shi Y, Zhao CX, et al. Printed all-solid flexible micro-supercapacitors: Towards the general route for high energy storage devices. Nanotechnology, 2014, 25: 094010

    Article  CAS  Google Scholar 

  25. Pang H, Zhang Y, Lai WY, et al. Lamellar K2Co3(P2O7)2·2H2O nanocrystal whiskers: High-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing. Nano Energy, 2015, 15: 303–312

    Article  CAS  Google Scholar 

  26. Yu Y, Zhang J, Wu X, et al. Facile ion-exchange synthesis of silver films as flexible current collectors for micro-supercapacitors. J Mater Chem A, 2015, 3: 21009–21015

    Article  CAS  Google Scholar 

  27. Xie Y, Zhang J, Xu H, et al. Laser-assisted mask-free patterning strategy for high-performance hybrid micro-supercapacitors with 3D current collectors. Chem Eng J, 2022, 437: 135493

    Article  CAS  Google Scholar 

  28. Niu Z, Zhang L, Liu L, et al. All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv Mater, 2013, 25: 4035–4042

    Article  CAS  Google Scholar 

  29. Gao W, Singh N, Song L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotech, 2011, 6: 496–500

    Article  CAS  Google Scholar 

  30. Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotech, 2010, 5: 651–654

    Article  CAS  Google Scholar 

  31. Lin J, Zhang C, Yan Z, et al. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett, 2013, 13: 72–78

    Article  Google Scholar 

  32. Beidaghi M, Wang C. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv Funct Mater, 2012, 22: 4501–4510

    Article  CAS  Google Scholar 

  33. Pu X, Liu M, Li L, et al. Wearable textile-based in-plane micro-supercapacitors. Adv Energy Mater, 2016, 6: 1601254

    Article  Google Scholar 

  34. Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci, 2014, 7: 867–884

    Article  CAS  Google Scholar 

  35. Zheng S, Li Z, Wu ZS, et al. High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors. ACS Nano, 2017, 11: 4009–4016

    Article  CAS  Google Scholar 

  36. Shi X, Pei S, Zhou F, et al. Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility. Energy Environ Sci, 2019, 12: 1534–1541

    Article  CAS  Google Scholar 

  37. Feng J, Sun X, Wu C, et al. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc, 2011, 133: 17832–17838

    Article  CAS  Google Scholar 

  38. Choi C, Robert K, Whang G, et al. Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors. Joule, 2021, 5: 2466–2478

    Article  CAS  Google Scholar 

  39. Kurra N, Alhebshi NA, Alshareef HN. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Adv Energy Mater, 2015, 5: 1401303

    Article  Google Scholar 

  40. Kurra N, Xia C, Hedhili MN, et al. Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage. Chem Commun, 2015, 51: 10494–10497

    Article  CAS  Google Scholar 

  41. Li J, Shi Q, Shao Y, et al. Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Mater, 2019, 16: 212–219

    Article  Google Scholar 

  42. Kumar KS, Choudhary N, Jung Y, et al. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett, 2018, 3: 482–495

    Article  CAS  Google Scholar 

  43. Peng L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett, 2013, 13: 2151–2157

    Article  CAS  Google Scholar 

  44. Li YQ, Shi XM, Lang XY, et al. Remarkable improvements in volumetric energy and power of 3D MnO2 microsupercapacitors by tuning crystallographic structures. Adv Funct Mater, 2016, 26: 1830–1839

    Article  CAS  Google Scholar 

  45. El-Kady MF, Ihns M, Li M, et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc Natl Acad Sci USA, 2015, 112: 4233–4238

    Article  CAS  Google Scholar 

  46. Song L, Dai C, Jin X, et al. Pure aqueous planar microsupercapacitors with ultrahigh energy density under wide temperature ranges. Adv Funct Mater, 2022, 32: 2203270

    Article  CAS  Google Scholar 

  47. Zhang SL, Jiang Q, Wu Z, et al. Energy harvesting-storage bracelet incorporating electrochemical microsupercapacitors self-charged from a single hand gesture. Adv Energy Mater, 2019, 9: 1900152

    Article  Google Scholar 

  48. Orangi J, Hamade F, Davis VA, et al. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano, 2020, 14: 640–650

    Article  CAS  Google Scholar 

  49. Zhang CJ, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun, 2019, 10: 1795

    Article  Google Scholar 

  50. Jiang Q, Kurra N, Maleski K, et al. On-chip MXene micro-supercapacitors for AC-line filtering applications. Adv Energy Mater, 2019, 9: 1901061

    Article  Google Scholar 

  51. Tian W, VahidMohammadi A, Reid MS, et al. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv Mater, 2019, 31: 1902977

    Article  Google Scholar 

  52. Ding M, Li S, Guo L, et al. Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors. Adv Energy Mater, 2021, 11: 2101494

    Article  CAS  Google Scholar 

  53. Li Q, Wang Q, Li L, et al. Femtosecond laser-etched MXene micro-supercapacitors with double-side configuration via arbitrary on- and through-substrate connections. Adv Energy Mater, 2020, 10: 2000470

    Article  CAS  Google Scholar 

  54. Ma J, Zheng S, Cao Y, et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv Energy Mater, 2021, 11: 2100746

    Article  CAS  Google Scholar 

  55. Li Z, Ruiz V, Mishukova V, et al. Inkjet printed disposable high-rate on-paper microsupercapacitors. Adv Funct Mater, 2021, 32: 2108773

    Article  Google Scholar 

  56. Qin J, Gao J, Shi X, et al. Hierarchical ordered dual-mesoporous polypyrrole/graphene nanosheets as bi-functional active materials for high-performance planar integrated system of micro-supercapacitor and gas sensor. Adv Funct Mater, 2020, 30: 1909756

    Article  CAS  Google Scholar 

  57. Jin X, Sun G, Zhang G, et al. A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res, 2019, 12: 1199–1206

    Article  CAS  Google Scholar 

  58. Han Y, Lu B, Shao C, et al. A hygroelectric power generator with energy self-storage. Chem Eng J, 2020, 384: 123366

    Article  CAS  Google Scholar 

  59. Wu ZS, Zheng Y, Zheng S, et al. Stacked-layer heterostructure films of 2D thiophene nanosheets and graphene for high-rate all-solid-state pseudocapacitors with enhanced volumetric capacitance. Adv Mater, 2017, 29: 1602960

    Article  Google Scholar 

  60. Jiang Y, Shao H, Li C, et al. Versatile graphene oxide putty-like material. Adv Mater, 2016, 28: 10287–10292

    Article  CAS  Google Scholar 

  61. Da Y, Liu J, Zhou L, et al. Engineering 2D architectures toward high-performance micro-supercapacitors. Adv Mater, 2019, 31: 1802793

    Article  Google Scholar 

  62. Qi D, Liu Y, Liu Z, et al. Design of architectures and materials in in-plane micro-supercapacitors: Current status and future challenges. Adv Mater, 2017, 29: 1602802

    Article  Google Scholar 

  63. Wang Y, Zhang Y, Wang G, et al. Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv Funct Mater, 2020, 30: 1907284

    Article  CAS  Google Scholar 

  64. Jiang Q, Kurra N, Xia C, et al. Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy. Adv Energy Mater, 2017, 7: 1601257

    Article  Google Scholar 

  65. Li J, Sollami Delekta S, Zhang P, et al. Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano, 2017, 11: 8249–8256

    Article  CAS  Google Scholar 

  66. Hyun WJ, Secor EB, Hersam MC, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater, 2015, 27: 109–115

    Article  CAS  Google Scholar 

  67. Yue Y, Liu N, Ma Y, et al. Highly self-healable 3D micro-supercapacitor with MXene-graphene composite aerogel. ACS Nano, 2018, 12: 4224–4232

    Article  CAS  Google Scholar 

  68. Kim D, Shin G, Kang YJ, et al. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano, 2013, 7: 7975–7982

    Article  CAS  Google Scholar 

  69. Liu Z, Wang HI, Narita A, et al. Photoswitchable micro-supercapacitor based on a diarylethene-graphene composite film. J Am Chem Soc, 2017, 139: 9443–9446

    Article  CAS  Google Scholar 

  70. Ma S, Shi Y, Zhang Y, et al. All-printed substrate-versatile micro-supercapacitors with thermoreversible self-protection behavior based on safe sol-gel transition electrolytes. ACS Appl Mater Interfaces, 2019, 11: 29960–29969

    Article  CAS  Google Scholar 

  71. Yue Y, Yang Z, Liu N, et al. A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano, 2016, 10: 11249–11257

    Article  CAS  Google Scholar 

  72. Xiao H, Wu ZS, Zhou F, et al. Stretchable tandem micro-supercapacitors with high voltage output and exceptional mechanical robustness. Energy Storage Mater, 2018, 13: 233–240

    Article  Google Scholar 

  73. Zhang P, Zhu F, Wang F, et al. Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window. Adv Mater, 2017, 29: 1604491

    Article  Google Scholar 

  74. Zhang P, Wang J, Sheng W, et al. Thermoswitchable on-chip microsupercapacitors: One potential self-protection solution for electronic devices. Energy Environ Sci, 2018, 11: 1717–1722

    Article  CAS  Google Scholar 

  75. Jin X, Song L, Dai C, et al. An aqueous anti-freezing and heat-tolerant symmetric microsupercapacitor with 2.3 V output voltage. Adv Energy Mater, 2021, 11: 2101523

    Article  CAS  Google Scholar 

  76. Gao C, Bai C, Gao J, et al. A directly swallowable and ingestible microsupercapacitor. J Mater Chem A, 2020, 8: 4055–4061

    Article  CAS  Google Scholar 

  77. Cong Z, Guo W, Guo Z, et al. Stretchable coplanar self-charging power textile with resist-dyeing triboelectric nanogenerators and microsupercapacitors. ACS Nano, 2020, 14: 5590–5599

    Article  CAS  Google Scholar 

  78. Qiu M, Sun P, Cui G, et al. A flexible microsupercapacitor with integral photocatalytic fuel cell for self-charging. ACS Nano, 2019, 13: 8246–8255

    Article  CAS  Google Scholar 

  79. Gao C, Huang J, Xiao Y, et al. A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Nat Commun, 2021, 12: 2647

    Article  CAS  Google Scholar 

  80. Zhang P, Wang F, Yu M, et al. Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems. Chem Soc Rev, 2018, 47: 7426–7451

    Article  CAS  Google Scholar 

  81. Wang J, Li F, Zhu F, et al. Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods, 2018, 3: 1800367

    Article  Google Scholar 

  82. Bu F, Zhou W, Xu Y, et al. Recent developments of advanced micro-supercapacitors: Design, fabrication and applications. npj Flex Electron, 2020, 4: 31

    Article  Google Scholar 

  83. Haider WA, Tahir M, He L, et al. Structural engineering and coupling of two-dimensional transition metal compounds for micro-supercapacitor electrodes. ACS Cent Sci, 2020, 6: 1901–1915

    Article  CAS  Google Scholar 

  84. Zhao C, Liu Y, Beirne S, et al. Recent development of fabricating flexible micro-supercapacitors for wearable devices. Adv Mater Technol, 2018, 3: 1800028

    Article  Google Scholar 

  85. Li H, Liang J. Recent development of printed micro-supercapacitors: Printable materials, printing technologies, and perspectives. Adv Mater, 2020, 32: 1805864

    Article  CAS  Google Scholar 

  86. Zhang J, Zhang G, Zhou T, et al. Recent developments of planar micro-supercapacitors: Fabrication, properties, and applications. Adv Funct Mater, 2020, 30: 1910000

    Article  CAS  Google Scholar 

  87. Wang Y, Zhao Y, Qu L. Laser fabrication of functional micro-supercapacitors. J Energy Chem, 2021, 59: 642–665

    Article  CAS  Google Scholar 

  88. Hong SY, Yoon J, Jin SW, et al. High-density, stretchable, all-solid-state microsupercapacitor arrays. ACS Nano, 2014, 8: 8844–8855

    Article  CAS  Google Scholar 

  89. Lee G, Kim D, Kim D, et al. Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte. Energy Environ Sci, 2015, 8: 1764–1774

    Article  CAS  Google Scholar 

  90. Yun J, Lim Y, Jang GN, et al. Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy, 2016, 19: 401–414

    Article  CAS  Google Scholar 

  91. Yun J, Song C, Lee H, et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy, 2018, 49: 644–654

    Article  CAS  Google Scholar 

  92. Zhang C, Peng Z, Huang C, et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy, 2021, 81: 105609

    Article  CAS  Google Scholar 

  93. Pu J, Wang X, Xu R, et al. Highly stretchable microsupercapacitor arrays with honeycomb structures for integrated wearable electronic systems. ACS Nano, 2016, 10: 9306–9315

    Article  CAS  Google Scholar 

  94. Qi D, Liu Z, Liu Y, et al. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv Mater, 2015, 27: 5559–5566

    Article  CAS  Google Scholar 

  95. Chen C, Cao J, Wang X, et al. Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy, 2017, 42: 187–194

    Article  CAS  Google Scholar 

  96. Lee G, Kim JW, Park H, et al. Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn-Mo mixed oxide electrodes and air-stable organic electrolyte. ACS Nano, 2019, 13: 855–866

    Article  CAS  Google Scholar 

  97. Yang HJ, Lee JW, Seo SH, et al. Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy, 2021, 86: 106083

    Article  CAS  Google Scholar 

  98. Li X, Li H, Fan X, et al. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv Energy Mater, 2020, 10: 1903794

    Article  CAS  Google Scholar 

  99. Park S, Lee H, Kim YJ, et al. Fully laser-patterned stretchable microsupercapacitors integrated with soft electronic circuit components. NPG Asia Mater, 2018, 10: 959–969

    Article  CAS  Google Scholar 

  100. Li L, Lou Z, Han W, et al. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv Mater Technol, 2017, 2: 1600282

    Article  Google Scholar 

  101. Wang Z, Li H, Tang Z, et al. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Funct Mater, 2018, 28: 1804560

    Article  Google Scholar 

  102. Jin X, Song L, Yang H, et al. Stretchable supercapacitor at −30 °C. Energy Environ Sci, 2021, 14: 3075–3085

    Article  CAS  Google Scholar 

  103. Wang H, Zhu B, Jiang W, et al. A mechanically and electrically self-healing supercapacitor. Adv Mater, 2014, 26: 3638–3643

    Article  CAS  Google Scholar 

  104. Jin X, Sun G, Yang H, et al. A graphene oxide-mediated polyelectrolyte with high ion-conductivity for highly stretchable and self-healing all-solid-state supercapacitors. J Mater Chem A, 2018, 6: 19463–19469

    Article  CAS  Google Scholar 

  105. Jin X, Song L, Dai C, et al. A self-healing zinc ion battery under −20°C. Energy Storage Mater, 2022, 44: 517–526

    Article  Google Scholar 

  106. Shi Y, Wang Y, Gu Y, et al. Self-healable and stretchable ionogels serve as electrolytes and substrates for integrated all-in-one micro-supercapacitors. Chem Eng J, 2020, 392: 123645

    Article  CAS  Google Scholar 

  107. Stuart MAC, Huck WTS, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater, 2010, 9: 101–113

    Article  Google Scholar 

  108. Hu J, Liu S. Responsive polymers for detection and sensing applications: Current status and future developments. Macromolecules, 2010, 43: 8315–8330

    Article  CAS  Google Scholar 

  109. Yerushalmi R, Scherz A, van der Boom ME, et al. Stimuli responsive materials: New avenues toward smart organic devices. J Mater Chem, 2005, 15: 4480–4487

    Article  CAS  Google Scholar 

  110. Orgiu E, Crivillers N, Herder M, et al. Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor. Nat Chem, 2012, 4: 675–679

    Article  CAS  Google Scholar 

  111. Naumov P, Chizhik S, Panda MK, et al. Mechanically responsive molecular crystals. Chem Rev, 2015, 115: 12440–12490

    Article  CAS  Google Scholar 

  112. Hu X, McIntosh E, Simon MG, et al. Stimuli-responsive free-standing layer-by-layer films. Adv Mater, 2016, 28: 715–721

    Article  CAS  Google Scholar 

  113. Massicotte M, Schmidt P, Vialla F, et al. Picosecond photoresponse in van der Waals heterostructures. Nat Nanotech, 2016, 11: 42–46

    Article  CAS  Google Scholar 

  114. Russew MM, Hecht S. Photoswitches: From molecules to materials. Adv Mater, 2010, 22: 3348–3360

    Article  CAS  Google Scholar 

  115. Zhang L, Zhong X, Pavlica E, et al. A nanomesh scaffold for supra-molecular nanowire optoelectronic devices. Nat Nanotech, 2016, 11: 900–906

    Article  CAS  Google Scholar 

  116. Tai Y, Lubineau G, Yang Z. Light-activated rapid-response polyvinylidene-fluoride-based flexible films. Adv Mater, 2016, 28: 4665–4670

    Article  CAS  Google Scholar 

  117. Nau S, Wolf C, Sax S, et al. Organic non-volatile resistive photoswitches for flexible image detector arrays. Adv Mater, 2015, 27: 1048–1052

    Article  CAS  Google Scholar 

  118. Hu Y, Wu G, Lan T, et al. A graphene-based bimorph structure for design of high performance photoactuators. Adv Mater, 2015, 27: 7867–7873

    Article  CAS  Google Scholar 

  119. Dong H, Zhu H, Meng Q, et al. Organic photoresponse materials and devices. Chem Soc Rev, 2012, 41: 1754–1808

    Article  CAS  Google Scholar 

  120. Palenzuela J, Viñuales A, Odriozola I, et al. Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes. ACS Appl Mater Interfaces, 2014, 6: 14562–14567

    Article  CAS  Google Scholar 

  121. Hwang E, Seo S, Bak S, et al. An electrolyte-free flexible electrochromic device using electrostatically strong graphene quantum dot-viologen nanocomposites. Adv Mater, 2014, 26: 5129–5136

    Article  CAS  Google Scholar 

  122. Huang Y, Zhu M, Huang Y, et al. Multifunctional energy storage and conversion devices. Adv Mater, 2016, 28: 8344–8364

    Article  CAS  Google Scholar 

  123. Dou Y, Pan T, Zhou A, et al. Reversible thermally-responsive electrochemical energy storage based on smart LDH@P(NIPAM-co-SPMA) films. Chem Commun, 2013, 49: 8462–8464

    Article  CAS  Google Scholar 

  124. Yang Y, Yu D, Wang H, et al. Smart electrochemical energy storage devices with self-protection and self-adaptation abilities. Adv Mater, 2017, 29: 1703040

    Article  Google Scholar 

  125. Kötz R, Hahn M, Gallay R. Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources, 2006, 154: 550–555

    Article  Google Scholar 

  126. Zhang H, Ma S, Zhang Q, et al. Thermoreversible and self-protective sol-gel transition electrolytes for all-printed transferable micro-supercapacitors as safer micro-energy storage devices. ACS Appl Mater Interfaces, 2020, 12: 41819–41831

    Article  CAS  Google Scholar 

  127. Jiang L, Dong D, Lu YC. Design strategies for low temperature aqueous electrolytes. Nano Res Energy, 2022, 1: e9120003

    Article  Google Scholar 

  128. Hota MK, Jiang Q, Wang Z, et al. Integration of electrochemical microsupercapacitors with thin film electronics for on-chip energy storage. Adv Mater, 2019, 31: 1807450

    Article  Google Scholar 

  129. Zheng S, Ma J, Wu ZS, et al. All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ Sci, 2018, 11: 2001–2009

    Article  CAS  Google Scholar 

  130. Shi X, Zhou F, Peng J, et al. One-step scalable fabrication of graphene-integrated micro-supercapacitors with remarkable flexibility and exceptional performance uniformity. Adv Funct Mater, 2019, 29: 1902860

    Article  CAS  Google Scholar 

  131. Jin X, Zhang G, Sun G, et al. Flexible and high-performance micro-supercapacitors with wide temperature tolerance. Nano Energy, 2019, 64: 103938

    Article  Google Scholar 

  132. Yang W, Zhu Y, Jia Z, et al. Interwoven nanowire based on-chip asymmetric microsupercapacitor with high integrability, areal energy, and power density. Adv Energy Mater, 2020, 10: 2001873

    Article  CAS  Google Scholar 

  133. Lee G, Kang SK, Won SM, et al. Fully biodegradable micro-supercapacitor for power storage in transient electronics. Adv Energy Mater, 2017, 7: 1700157

    Article  Google Scholar 

  134. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem, 2015, 7: 19–29

    Article  CAS  Google Scholar 

  135. Wang H, Park JD, Ren ZJ. Practical energy harvesting for microbial fuel cells: A review. Environ Sci Technol, 2015, 49: 3267–3277

    Article  CAS  Google Scholar 

  136. Peuster M. Biocompatibility of corroding tungsten coils: In vitro assessment of degradation kinetics and cytotoxicity on human cells. Biomaterials, 2003, 24: 4057–4061

    Article  CAS  Google Scholar 

  137. Zhu S, Huang N, Xu L, et al. Biocompatibility of pure iron: In vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Mater Sci Eng-C, 2009, 29: 1589–1592

    Article  CAS  Google Scholar 

  138. Yin L, Cheng H, Mao S, et al. Dissolvable metals for transient electronics. Adv Funct Mater, 2014, 24: 645–658

    Article  CAS  Google Scholar 

  139. Tian W, Li Y, Zhou J, et al. Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@PPy hybrid electrode. ACS Appl Mater Interfaces, 2021, 13: 8285–8293

    Article  CAS  Google Scholar 

  140. Pal RK, Kundu SC, Yadavalli VK. Fabrication of flexible, fully organic, degradable energy storage devices using silk proteins. ACS Appl Mater Interfaces, 2018, 10: 9620–9628

    Article  CAS  Google Scholar 

  141. Wang X, Xu W, Chatterjee P, et al. Food-materials-based edible supercapacitors. Adv Mater Technol, 2016, 1: 1600059

    Article  Google Scholar 

  142. Fang L, Zhang J, Wang W, et al. Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes. ACS Appl Mater Interfaces, 2020, 12: 56393–56402

    Article  CAS  Google Scholar 

  143. Fan FR, Tian ZQ, Lin Wang Z. Flexible triboelectric generator. Nano Energy, 2012, 1: 328–334

    Article  CAS  Google Scholar 

  144. He W, Fu X, Zhang D, et al. Recent progress of flexible/wearable self-charging power units based on triboelectric nanogenerators. Nano Energy, 2021, 84: 105880

    Article  CAS  Google Scholar 

  145. Luo J, Fan FR, Jiang T, et al. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res, 2015, 8: 3934–3943

    Article  Google Scholar 

  146. Jiang Q, Wu C, Wang Z, et al. MXene electrochemical micro-supercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 2018, 45: 266–272

    Article  CAS  Google Scholar 

  147. Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photon, 2014, 8: 506–514

    Article  CAS  Google Scholar 

  148. Lewis NS. Introduction: Solar energy conversion. Chem Rev, 2015, 115: 12631–12632

    Article  CAS  Google Scholar 

  149. Gao J, Shao C, Shao S, et al. Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array. Small, 2018, 14: 1801809

    Article  Google Scholar 

  150. Sun J, Gao K, Lin X, et al. Laser-assisted fabrication of micro-photocapacitors with high energy density and output voltage. ACS Appl Mater Interfaces, 2021, 13: 419–428

    Article  CAS  Google Scholar 

  151. Gubbi J, Buyya R, Marusic S, et al. Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Comput Syst, 2013, 29: 1645–1660

    Article  Google Scholar 

  152. Kelly SDT, Suryadevara NK, Mukhopadhyay SC. Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sens J, 2013, 13: 3846–3853

    Article  Google Scholar 

  153. Cai J, Lv C, Watanabe A. Laser direct writing and selective metallization of metallic circuits for integrated wireless devices. ACS Appl Mater Interfaces, 2018, 10: 915–924

    Article  CAS  Google Scholar 

  154. Kim D, Kim D, Lee H, et al. Body-attachable and stretchable multi-sensors integrated with wirelessly rechargeable energy storage devices. Adv Mater, 2016, 28: 748–756

    Article  CAS  Google Scholar 

  155. Wang X, Guo X, Ye J, et al. Freestanding 3D mesostructures, functional devices, and shape-programmable systems based on mechanically induced assembly with shape memory polymers. Adv Mater, 2019, 31: 1805615

    Article  Google Scholar 

  156. Araki H, Kim J, Zhang S, et al. Materials and device designs for an epidermal UV colorimetric dosimeter with near field communication capabilities. Adv Funct Mater, 2017, 27: 1604465

    Article  Google Scholar 

  157. Guo R, Chen J, Yang B, et al. In-plane micro-supercapacitors for an integrated device on one piece of paper. Adv Funct Mater, 2017, 27: 1702394

    Article  Google Scholar 

  158. Shi X, Chang J, Qin J, et al. Scalable fabrication of in-plane microscale self-powered integrated systems for fast-response and highly selective dual-channel gas detection. Nano Energy, 2021, 88: 106253

    Article  CAS  Google Scholar 

  159. Lu Y, Jiang K, Chen D, et al. Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy, 2019, 58: 624–632

    Article  CAS  Google Scholar 

  160. Song Y, Chen H, Chen X, et al. All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy, 2018, 53: 189–197

    Article  CAS  Google Scholar 

  161. Zhang Y, Wang L, Zhao L, et al. Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films. Adv Mater, 2021, 33: 2007890

    Article  CAS  Google Scholar 

  162. Park H, Song C, Jin SW, et al. High performance flexible micro-supercapacitor for powering a vertically integrated skin-attachable strain sensor on a bio-inspired adhesive. Nano Energy, 2021, 83: 105837

    Article  CAS  Google Scholar 

  163. Yun J, Lim Y, Lee H, et al. A patterned graphene/ZnO UV sensor driven by integrated asymmetric micro-supercapacitors on a liquid metal patterned foldable paper. Adv Funct Mater, 2017, 27: 1700135

    Article  Google Scholar 

  164. Cai J, Lv C, Watanabe A. Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy, 2016, 30: 790–800

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, 22109009, 21975027, 22035005, and 52073159), China Postdoctoral Science Foundation (2020M680376), the National Key R&D Program of China (2017YFB1104300), and the NSFC-STINT (21911530143).

Author information

Authors and Affiliations

Authors

Contributions

Song L, Jin X, Zhang Z and Qu L wrote and revised the manuscript. Song L, Dai C and Han Y collected and summarized the literature and Zhang J contributed to the manuscript writing. Jin X, Zhang Z and Qu L revised the manuscript and offered creative proposal for improving the depth and coverage of the review. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Xuting Jin  (靳绪庭), Zhipan Zhang  (张志攀) or Liangti Qu  (曲良体).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Li Song received her PhD degree in 2019 from Tianjin University, China. She is currently a postdoctor under the supervision of Prof. Liangti Qu at the School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT). Her interests focus on flexible energy storage devices.

Xuting Jin received his PhD degree in 2020 from BIT, China. He is currently a postdoctor under the supervision of Prof. Jiatao Zhang at the School of Materials Science and Engineering, BIT. His research interests in energy storage mainly focus on supercapacitors, zinc ion batteries, micro-batteries, and their functionalization.

Zhipan Zhang received his doctorate degree from École Polytechnique Fédérale de Lausanne (Swiss federal Institute of Technology in Lausanne) in 2008. After working at Dysol Ltd., Monash University, and the University of Calgary, he is now a professor at BIT. His research focuses on nano-functional materials and new energy conversion and storage devices.

Liangti Qu received his PhD degree in chemistry from Tsinghua University (Beijing, China) in 2004. He is now a professor at the Department of Chemistry, Tsinghua University and leads the nanocarbon research group. His research interests in materials chemistry mainly focus on the synthesis, functionalization, and application of nano-materials with carbon-carbon conjugated structures, including carbon nanotubes, graphene, and conducting polymers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Jin, X., Dai, C. et al. Multifunctional devices based on planar microsupercapacitors: Progress and challenges. Sci. China Mater. 65, 3202–3228 (2022). https://doi.org/10.1007/s40843-022-2175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2175-y

Keywords

Navigation