Skip to main content

Pseudocapacitive Materials for Flexible Supercapacitors

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 191 Accesses

Abstract

Along with the rapid development of flexible and wearable electronics, there has been a strong need for flexible energy storage devices to power these devices. Flexible supercapacitors (FSCs), having the unique characteristics of high-power density, long lifetime, wide operating temperature range, and remarkable safety in a flexible fashion, have been extensively studied for this emerging technology. An ideal FSC would have both superior electrochemical performances and excellent mechanical deformabilities, which require thorough research on the electrode materials and device configurations of FSCs. This chapter reviews the recent progress on these aspects of FSCs. Electrode materials, specifically pseudocapacitive materials (including metal oxides, conducting polymers, and Mxenes) and their composites, of FSCs are firstly elucidated. This is followed by the discussion about the device configurations of pseudocapacitive material-incorporated FSCs, ranging from one-dimensional fiber-shaped to two-dimensional film-shaped and three-dimensional structural. Finally, the practical applications of pseudocapacitive material incorporated FSCs are summarized. In conclusion, the current challenges and future prospects for pseudocapacitive material-incorporated FSCs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin, Y. Zhang, Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, e1801072 (2019)

    Article  Google Scholar 

  2. Y. Liu, M. Pharr, G.A. Salvatore, Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017)

    Article  CAS  Google Scholar 

  3. L. Lyu, W. Hooch Antink, Y. S. Kim, C. W. Kim, T. Hyeon, Y. Piao, Recent development of flexible and stretchable supercapacitors using transition metal compounds as electrode materials. Small 17, e2101974 (2021)

    Google Scholar 

  4. Y. Zhou, C.H. Wang, W. Lu, L. Dai, Recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv. Mater. 32, e1902779 (2020)

    Article  Google Scholar 

  5. P. Xie, W. Yuan, X. Liu, Y. Peng, Y. Yin, Y. Li, Z. Wu, Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Ene. Stor. Mater 36, 56–76 (2021)

    Google Scholar 

  6. G. Shao, R. Yu, N. Chen, M. Ye, X.Y. Liu, Stretchable supercapacitors: From materials and structures to devices. Small Methods 5, 2000853 (2021)

    Article  CAS  Google Scholar 

  7. Y. Han, L. Dai, Conducting polymers for flexible supercapacitors. Macromol. Chem. Phys. 220, 1800355 (2019)

    Article  Google Scholar 

  8. S. A. Delbari, L. S. Ghadimi, R. Hadi, S. Farhoudian, M. Nedaei, A. Babapoor, A. Sabahi Namini, Q. V. Le, M. Shokouhimehr, M. Shahedi Asl, M. Mohammadi, Transition metal oxide-based electrode materials for flexible supercapacitors: a review. J. Alloys Compd. 857, 158281 (2021)

    Google Scholar 

  9. S. Nam, J.-N. Kim, S. Oh, J. Kim, C.W. Ahn, I.-K. Oh, Ti3C2Tx MXene for wearable energy devices: supercapacitors and triboelectric nanogenerators. APL Mater. 8, 110701 (2020)

    Article  CAS  Google Scholar 

  10. T. An, W. Cheng, Recent progress in stretchable supercapacitors. J. Mater. Chem. A 6, 15478–15494 (2018)

    Article  CAS  Google Scholar 

  11. S. Sahoo, R. Kumar, E. Joanni, R.K. Singh, J.-J. Shim, Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. J. Mater. Chem. A 10, 13190–13240 (2022)

    Article  CAS  Google Scholar 

  12. Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018)

    Article  CAS  Google Scholar 

  13. Y. Wang, Y. Ding, X. Guo, G. Yu, Conductive polymers for stretchable supercapacitors. Nano Res. 12, 1978–1987 (2019)

    Article  CAS  Google Scholar 

  14. C. Zhao, X. Jia, K. Shu, C. Yu, G.G. Wallace, C. Wang, Conducting polymer composites for unconventional solid-state supercapacitors. J Mater Chem A 8, 4677–4699 (2020)

    Article  CAS  Google Scholar 

  15. L. Huang, D. Santiago, P. Loyselle, L. Dai, Graphene-based nanomaterials for flexible and wearable supercapacitors. Small 14, e1800879 (2018)

    Article  Google Scholar 

  16. Z. Lv, Y. Luo, Y. Tang, J. Wei, Z. Zhu, X. Zhou, W. Li, Y. Zeng, W. Zhang, Y. Zhang, D. Qi, S. Pan, X.J. Loh, X. Chen, Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 30, 1704531 (2018)

    Article  Google Scholar 

  17. Q. Zhuang, W. Li, Z. Zhu, H. Yu, W. Chen, J. Yang, M. Fu, Facile growth of hierarchical SnO2@PPy composites on carbon cloth as all-solid-state flexible supercapacitors. J. Alloy. Compd. 906, 164275 (2022)

    Article  CAS  Google Scholar 

  18. X. Li, R. Liu, C. Xu, Y. Bai, X. Zhou, Y. Wang, G. Yuan, High-performance Polypyrrole/Graphene/SnCl2 modified polyester textile electrodes and yarn electrodes for wearable energy storage. Adv. Funct. Mater. 28, 1800064 (2018)

    Article  Google Scholar 

  19. H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang, X. Zhang, B. Li, C. Si, Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022)

    Article  CAS  Google Scholar 

  20. J. Wang, L. Dong, C. Xu, D. Ren, X. Ma, F. Kang, Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles. ACS Appl. Mater. Inter. 10, 10851–10859 (2018)

    Article  CAS  Google Scholar 

  21. H.U. Lee, C. Park, J.-H. Jin, S.W. Kim, A stretchable vertically stacked microsupercapacitor with kirigami-bridged island structure: MnO2/graphene/Poly(3,4-ethylenedioxythiophene) nanocomposite electrode through pen lithography. J. Power. Sources 453, 227898 (2020)

    Article  CAS  Google Scholar 

  22. C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng, W. Lan, A. Pakdel, J. Heier, F. Nüesch, Two dimensional transition metal carbides and nitrides (MXenes): synthesis properties, and electrochemical energy storage applications. Energ. Environ. Mater 3, 29–55 (2020)

    Article  CAS  Google Scholar 

  23. M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.-L. Taberna, M.W. Barsoum, P. Simon, Y. Gogotsi, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017)

    Article  CAS  Google Scholar 

  24. H. Li, R. Chen, M. Ali, H. Lee, M.J. Ko, In Situ grown MWCNTs/MXenes nanocomposites on carbon cloth for high-performance flexible supercapacitors. Adv. Funct. Mater. 30, 2002739 (2020)

    Article  CAS  Google Scholar 

  25. C. Yu, Y. Gong, R. Chen, M. Zhang, J. Zhou, J. An, F. Lv, S. Guo, G. Sun, A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets. Small, e1801203 (2018)

    Google Scholar 

  26. Y.-L. Huang, S.-W. Bian, Vacuum-filtration assisted layer-by-layer strategy to design MXene/carbon nanotube@MnO2 all-in-one supercapacitors. J. Mater. Chem. A. 9, 21347–21356 (2021)

    Article  CAS  Google Scholar 

  27. A. Salman, S. Padmajan Sasikala, I. H. Kim, J. T. Kim, G. S. Lee, J. G. Kim, S. O. Kim, Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors. Nanoscale, 12, 20239–20249 (2020)

    Google Scholar 

  28. Y. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y. Pang, Y. Feng, K. Zeng, C.B. Parker, S. Zauscher, Y. Gogotsi, J.T. Glass, C. Cao, Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 14, 3576–3586 (2020)

    Article  CAS  Google Scholar 

  29. W. Chen, D. Zhang, K. Yang, M. Luo, P. Yang, X. Zhou, Mxene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors. Chem. Eng. J. 413, 127524 (2020)

    Article  Google Scholar 

  30. M. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei, Q. Xue, Y. Huang, Z. Wang, H. Li, Q. Huang, C. Zhi, Highly flexible freestanding supercapacitor electrode with enhanced performance obtained by hybridizing Polypyrrole chains with MXene. Adv. Energy Mater. 6, 1600969 (2016)

    Article  Google Scholar 

  31. Q. Zhu, J. Li, P. Simon, B. Xu, Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy Stor. Mater 35, 630–660 (2021)

    Google Scholar 

  32. X. Chen, N.S. Villa, Y. Zhuang, L. Chen, T. Wang, Z. Li, T. Kong, Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv. Energy Mater. 10, 1902769 (2019)

    Article  Google Scholar 

  33. J. Liang, C. Jiang, W. Wu, Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs. Nanoscale 11, 7041–7061 (2019)

    Article  CAS  Google Scholar 

  34. Q. Zhou, X. Chen, F. Su, X. Lyu, M. Miao, Sandwich-structured transition metal oxide/graphene/carbon nanotube composite Yarn electrodes for flexible two-ply yarn supercapacitors. Ind. Eng. Chem. Res. 59, 5752–5759 (2020)

    Article  CAS  Google Scholar 

  35. M. Li, M. Zu, J. Yu, H. Cheng, Q. Li, Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 13, 1602994 (2017)

    Article  Google Scholar 

  36. S. Wang, N. Liu, J. Su, L. Li, F. Long, Z. Zou, X. Jiang, Y. Gao, Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11, 2066–2074 (2017)

    Article  CAS  Google Scholar 

  37. J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, H. Hu, High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016)

    Article  CAS  Google Scholar 

  38. Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang, A. Levitt, N. Li, C. Haines, R. Ovalle-Robles, W. Lei, Y. Gogotsi, R.H. Baughman, J.M. Razal, High-performance Biscrolled MXene/carbon nanotube Yarn supercapacitors. Small 14, e1802225 (2018)

    Article  Google Scholar 

  39. Y. Xu, Y. Yan, W. Lu, S. Yarlagadda, G. Xu, High-performance flexible asymmetric fiber-shaped supercapacitor based on CF/PPy and CNT/MnO2 composite electrodes. ACS Appl. Energy Mater 4, 10639–10645 (2021)

    Article  CAS  Google Scholar 

  40. Z. Pan, J. Yang, L. Li, X. Gao, L. Kang, Y. Zhang, Q. Zhang, Z. Kou, T. Zhang, L. Wei, Y. Yao, J. Wang, All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Ene. Stor. Mater 25, 124–130 (2020)

    Google Scholar 

  41. Z. Pan, J. Yang, Q. Zhang, M. Liu, Y. Hu, Z. Kou, N. Liu, X. Yang, X. Ding, H. Chen, J. Li, K. Zhang, Y. Qiu, Q. Li, J. Wang, Y. Zhang, All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility. Adv. Energy Mater. 9, 1802753 (2019)

    Article  Google Scholar 

  42. G. Lee, J.W. Kim, H. Park, J.Y. Lee, H. Lee, C. Song, S.W. Jin, K. Keum, C.H. Lee, J.S. Ha, Skin-Like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn-Mo mixed oxide electrodes and air-stable organic electrolyte. ACS Nano 13, 855–866 (2019)

    Article  CAS  Google Scholar 

  43. C. Li, S. Wang, Y. Cui, X. Wang, Z. Yong, D. Liang, Y. Chi, Z. Wang, Sandwich-like MXene/alpha-Fe2O3-C-MoS2-PEDOT:PSS/MXene Film electrodes with ultrahigh area capacitance for flexible supercapacitors. ACS Appl Mater Inter 14, 9172–9182 (2022)

    Article  CAS  Google Scholar 

  44. A.M. Patil, N.R. Chodankar, E. Jung, S. Roy, D.P. Dubal, G. Guan, Y.-K. Han, S.C. Jun, 2D-on-2D core-shell Co3(PO4)2 stacked micropetals@Co2Mo3O8 nanosheets and binder-free 2D CNT-Ti3C2TX-MXene electrodes for high-energy solid-state flexible supercapacitors. J Mater Chem A 9, 26135–26148 (2021)

    Article  CAS  Google Scholar 

  45. Z. Zhou, Q. Li, L. Yuan, L. Tang, X. Wang, B. He, P. Man, C. Li, L. Xie, W. Lu, L. Wei, Q. Zhang, Y. Yao, Achieving ultrahigh-energy-density in flexible and lightweight all-solid-state internal asymmetric tandem 6.6 V all-in-one supercapacitors. Ener. Stor. Mater, 25, 893–902 (2020)

    Google Scholar 

  46. N. Swain, A. Tripathy, A. Thirumurugan, B. Saravanakumar, L. Schmidt-Mende, A. Ramadoss, A brief review on stretchable, compressible, and deformable supercapacitor for smart devices. Chem. Eng. J. 446, 136876 (2022)

    Article  CAS  Google Scholar 

  47. Z. Lv, Y. Tang, Z. Zhu, J. Wei, W. Li, H. Xia, Y. Jiang, Z. Liu, Y. Luo, X. Ge, Y. Zhang, R. Wang, W. Zhang, X.J. Loh, X. Chen, Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance. Adv. Mater. 30, 1805468 (2018)

    Article  Google Scholar 

  48. J. Wen, B. Xu, Y. Gao, M. Li, H. Fu, Wearable technologies enable high-performance textile supercapacitors with flexible, breathable and wearable characteristics for future energy storage. Energy Stor. Mater 37, 94–122 (2021)

    Google Scholar 

  49. J. Yun, H. Lee, C. Song, Y.R. Jeong, J.W. Park, J.H. Lee, D.S. Kim, K. Keum, M.S. Kim, S.W. Jin, Y.H. Lee, J.W. Kim, G. Zi, J.S. Ha, A Fractal-designed stretchable and transparent microsupercapacitor as a Skin-attachable energy storage device. Chem. Eng. J. 387, 124076 (2020)

    Article  CAS  Google Scholar 

  50. H. Park, J.W. Kim, S.Y. Hong, G. Lee, H. Lee, C. Song, K. Keum, Y.R. Jeong, S.W. Jin, D.S. Kim, J.S. Ha, Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system. ACS Nano 13, 10469–10480 (2019)

    Article  CAS  Google Scholar 

  51. H. Park, J. W. Kim, S. Y. Hong, G. Lee, D. S. Kim, J. H. Oh, S. W. Jin, Y. R. Jeong, S. Y. Oh, J. Y. Yun, J. S. Ha, Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater, 28 1707013 (2018)

    Google Scholar 

  52. J. Lv, I. Jeerapan, F. Tehrani, L. Yin, C.A. Silva-Lopez, J.-H. Jang, D. Joshuia, R. Shah, Y. Liang, L. Xie, F. Soto, C. Chen, E. Karshalev, C. Kong, Z. Yang, J. Wang, Sweat-based wearable energy harvesting-storage hybrid textile devices. Energ. Environ. Sci. 11, 3431–3442 (2018)

    Article  CAS  Google Scholar 

  53. C. Zhang, V. Nicolosi, Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Stor. Mater 16, 102–125 (2019)

    Google Scholar 

  54. T.G. Yun, M. Park, D.H. Kim, D. Kim, J.Y. Cheong, J.G. Bae, S.M. Han, I.D. Kim, All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13, 3141–3150 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Special Significant Science and Technology Program of Yunnan Province (grant number: 2016HE001-2016HE002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, F., Yang, X., Lu, W. (2024). Pseudocapacitive Materials for Flexible Supercapacitors. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_14

Download citation

Publish with us

Policies and ethics