Skip to main content
Log in

Convergence Theorems for Equilibrium and Fixed Point Problems

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Our purpose in this paper is to prove strong convergence theorems for approximation of a fixed point of a left Bregman strongly relatively nonexpansive mapping which is also a solution to a finite system of equilibrium problems in the framework of reflexive real Banach spaces. We also discuss the approximation of a common fixed point of a family of left Bregman strongly nonexpansive mappings which is also solution to a finite system of equilibrium problems in reflexive real Banach spaces. Our results complement many known recent results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, Y.I.: Metric and generalized projection operator in Banach spaces: properties and applications. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Applied Mathematics, vol. 178, pp. 15–50. Dekker, New York (1996)

  2. Anh, P.N.: A hybrid extragradient method for pseudomonotone equilibrium problems and fixed point problems. Bull. Malays. Math. Sci. Soc. 36, 107–116 (2013)

    MATH  MathSciNet  Google Scholar 

  3. Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27–67 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bauschke, H.H., Wang, X., Yao, L.: General resolvents for monotone operators: characterization and extension. In: Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, Medical Physics Publishing, Madison, pp. 57–74 (2009)

  8. Bello Cruz, J.Y., Iusem, A.N.: An explicit algorithm for monotone variational inequalities. Optimization 61, 855–871 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MATH  MathSciNet  Google Scholar 

  10. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  11. Borwein, J.M., Reich, S., Sabach, S.: A characterization of Bregman firmly nonexpansive operators using a new monotonicity concept. J. Nonlinear Convex Anal. 12, 161–184 (2011)

    MATH  MathSciNet  Google Scholar 

  12. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  13. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal 2006, 1–39 (2006). Art. ID 84919

    Article  MathSciNet  Google Scholar 

  14. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  15. Butnariu, D., Censor, Y., Reich, S.: Iterative averaging of entropic projections for solving stochastic convex feasibility problems. Comput. Optim. Appl. 8, 21–39 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cai, G., Bu, S.: Strong convergence theorems for variational inequality problems and fixed point problems in Banach spaces. Bull. Malays. Math. Sci. Soc. 36, 525–540 (2013)

    MATH  MathSciNet  Google Scholar 

  17. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Censor, Y., Reich, S.: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization. Optimization 37, 323–339 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen, J.W., Cho, Y.J., Agarwal, R.P.: Strong convergence theorems for equilibrium problems and weak Bregman relatively nonexpansive mappings in Banach spaces. J. Inequal. Appl. 2013, 119 (2013). doi:10.1186/1029-242X-2013-119

    Article  MathSciNet  Google Scholar 

  20. Chen, J.W., Wan, Z., Yuan, L.: Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces. Int. J. Math. Math. Sci. 2011, 1–23 (2011)

    MATH  MathSciNet  Google Scholar 

  21. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MATH  MathSciNet  Google Scholar 

  22. Hao, Y.: Zero theorems of accretive operators. Bull. Malays. Math. Sci. Soc. 34, 103–112 (2011)

    MATH  MathSciNet  Google Scholar 

  23. Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms II. Grundlehren der mathematischen Wissenschaften, vol. 306. Springer, New York (1993)

    MATH  Google Scholar 

  24. Kohsaka, F., Takahashi, W.: Proximal point algorithms with Bregman functions in Banach spaces. J. Nonlinear Convex Anal. 6, 505–523 (2005)

    MATH  MathSciNet  Google Scholar 

  25. Kumam, P.: A new hybrid iterative method for solution of equilibrium problems and fixed point problems for an inverse strongly monotone operator and a nonexpansive mapping. J. Appl. Math. Comput. 29, 263–280 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Martin-Marquez, V., Reich, S., Sabach, S.: Right Bregman nonexpansive operators in Banach spaces. Nonlinear Anal. 75, 5448–5465 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Martin-Marquez, V., Reich, S., Sabach, S.: Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discret. Contin. Dyn. Syst. 6, 1043–1063 (2012)

    Article  MathSciNet  Google Scholar 

  29. Moreau, J.-J.: Sur la fonction polaire dune fonction semi-continue superieurement. C. R. Acad. Sci. Paris 258, 1128–1130 (1964)

    MATH  MathSciNet  Google Scholar 

  30. Moudafi, A.: A partial complement method for approximating solutions of a primal dual fixed-point problem. Optim. Lett. 4(3), 449–456 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pardalos, P.M., Rassias, T.M., Khan, A.A.: Nonlinear Analysis and Variational Problems. Springer, New York (2010)

    Book  MATH  Google Scholar 

  32. Phelps, R.P.: Convex Functions, Monotone Operators, and Differentiability, 2nd Edition. In: Lecture Notes in Mathematics, vol. 1364. Springer, Berlin (1993)

  33. Plubtieng, S., Punpaeng, R.: A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings. Appl. Math. Comput. 197, 548–558 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Qin, X., Cho, Y.J., Kang, S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225, 20–30 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Qin, X., Kang, S.M.: Convergence theorems on an iterative method for variational inequality problems and fixed point problems. Bull. Malays. Math. Sci. Soc. 33, 155–167 (2010)

    MATH  MathSciNet  Google Scholar 

  36. Qin, X., Su, Y.: Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 1958–1965 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, pp. 313–318 (1996)

  38. Reich, S., Sabach, S.: Existence and approximation of fixed points of Bregman firmly nonexpansive operators in reflexive Banach spaces, In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Optimization and its Applications, vol. 49, Springer, New York, pp. 301–316 (2011)

  39. Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10(3), 471–485 (2009)

    MATH  MathSciNet  Google Scholar 

  40. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31(13), 22–44 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Reich, S., Sabach, S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. 73(1), 122–135 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Reich, S., Sabach, S.: A projection method for solving nonlinear problems in reflexive Banach spaces. J. Fixed Point Theory Appl. 9, 101–116 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  44. Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Am. Math. Soc. 123, 46–63 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  45. Shehu, Y.: A new iterative scheme for a countable family of relatively nonexpansive mappings and an equilibrium problem in Banach spaces. J. Glob. Optim. 54, 519–535 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Shehu, Y.: Convergence theorems for maximal monotone operators and xed point problems in Banach spaces. Appl. Math. Comput. 239, 285–298 (2014)

  47. Suantai, S., Cho, Y.J., Cholamjiak, P.: Halpern’s iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces. Comp. Math. Appl. 64, 489–499 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  48. Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–518 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Takahashi, W., Zembayashi, K.: Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl., Article ID 528476, 11 p (2008)

  50. Takahashi, W., Zembayashi, K.: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45–57 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  51. Wangkeeree, R.: An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings. Fixed Point Theory Appl. 2008(134148), 17 (2008)

    MathSciNet  Google Scholar 

  52. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66(2), 240–256 (2002)

    Article  MATH  Google Scholar 

  53. Yazdi, M.: A new iterative method for generalized equilibrium and fixed point problems of nonexpansive mappings. Bull. Malays. Math. Sci. Soc. 35, 1049–1061 (2012)

    MATH  MathSciNet  Google Scholar 

  54. Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific. Publishing Co., Inc, River Edge (2002)

    Book  MATH  Google Scholar 

  55. Zegeye, H., Ofoedu, E.U., Shahzad, N.: Convergence theorems for equilibrium problems, variational inequality problem and countably infinite relatively nonexpansive mappings. Appl. Math. Comp. 216, 3439–3449 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  56. Zegeye, H., Shahzad, N.: A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems. Nonlinear Anal. 70, 2707–2716 (2010)

    Article  MathSciNet  Google Scholar 

  57. Zhu, J.H., Chang, S.S.: Halpern-Manns iterations for Bregman strongly nonexpansive mappings in reflexive Banach spaces with applications. J. Inequal. Appl. 2013, 146 (2013). doi:10.1186/1029-242X-2013-146

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekini Shehu.

Additional information

Communicated by Poom Kumam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehu, Y. Convergence Theorems for Equilibrium and Fixed Point Problems. Bull. Malays. Math. Sci. Soc. 39, 133–153 (2016). https://doi.org/10.1007/s40840-015-0165-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-015-0165-6

Keywords

Mathematics Subject Classification

Navigation