Skip to main content
Log in

A Convergence Theorem for Solving Generalized Mixed Equilibrium Problems and Finding Fixed Points of a Weak Bregman Relatively Nonexpansive Mappings in Banach Spaces

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

In this paper, we study a new iterative method for finding fixed points of a weak Bregman relatively nonexpansive mapping and solutions of generalized mixed equilibrium problems in Banach spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agarwal, R.P., Chen, J.W., Cho, Y.J.: Strong convergence theorems for equilibrium problems and weak Bregman relatively nonexpansive mappings in Banach spaces. J. Inequal. Appl. 119, 2013 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Alber, Y.I.: Generalized projection operators in Banach spaces: properties and applications. In: Functional Differential Equations. Proceedings of the Israel Seminar Ariel, Israel, vol. 1, pp 1–21 (1993)

  3. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, pp 15–50. Marcel Dekker, New York (1996)

  4. Aslam Noor, M.: Generalized mixed quasi-equilibrium problems with trifunction. Appl. Math. Lett. 18, 695–700 (2005)

    Article  MathSciNet  Google Scholar 

  5. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Aslam Noor, M., Oettli, W.: On general nonlinear complementarity problems and quasi equilibria. Matematiche (Catania) 49, 313–331 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    Article  MathSciNet  Google Scholar 

  8. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problem. Springer, New York (2000)

    Book  Google Scholar 

  9. Borwein, J.M., Reich, S., Sabach, S.: A characterization of Bregman firmly nonexpansive mappings using a new monotonicity concept. J. Nonlinear Convex Anal. 12, 161–184 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  Google Scholar 

  11. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Burnariu, D., Reich, S., Zaslavski, A.J.: Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J. Appl. Anal. 7, 151–174 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Butnariu, D., Reich, S., Zaslavski, A.J.: There are many totally convex functions. J. Convex Anal. 13, 623–632 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization Applied Optimization, vol. 40. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  15. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. Art. ID 84919, 1–39 (2006)

    MATH  Google Scholar 

  16. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    Article  MathSciNet  Google Scholar 

  17. Darvish, V.: Strong convergence theorem for a system of generalized mixed equilibrium problems and Bregman nonexpansive mapping in Banach spaces. Opsearch. 53, 584–603 (2016)

    Article  MathSciNet  Google Scholar 

  18. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York and Basel (1984)

    MATH  Google Scholar 

  19. Hiriart-Urruty, J.B., Lemaréchal, C.: Grundlehren der mathematischen Wissenschaften. In: Convex Analysis and Minimization Algorithms II, vol. 306. Springer (1993)

  20. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kohsaka, F., Takahashi, W.: Proximal point algorithms with Bregman functions in Banach spaces. J. Nonlinear Convex Anal. 6, 505–523 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Martín-Márquez, V., Reich, S., Sabach, S.: Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete Contin. Dyn. Syst. Ser. S. 6, 1043–1063 (2013)

    Article  MathSciNet  Google Scholar 

  23. Phelps, R.P.: Convex functions, monotone operators, and differentiability. In: Lecture Notes in Mathematics. 2nd edn., p 1364. Springer, Berlin (1993)

  24. Reem, D., Reich, S., De Pierro, A.: Re-examination of Bregman functions and new properties of their divergences. Optimization 68, 279–348 (2019)

    Article  MathSciNet  Google Scholar 

  25. Reem, D., Reich, S.: Solutions to inexact resolvent inclusion problems with applications to nonlinear analysis and optimization. Rend. Circ. Mat. Palermo 67, 337–371 (2018)

    Article  MathSciNet  Google Scholar 

  26. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp 313–318. Marcel Dekker, New York (1996)

  27. Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Reich, S., Sabach, S.: A projection method for solving nonlinear problems in reflexive Banach spaces. J. Fixed Point Theory Appl. 9, 101–116 (2011)

    Article  MathSciNet  Google Scholar 

  29. Reich, S., Sabach, S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Optimization and Its Applications, vol. 49, pp 301–316 (2011)

  30. Reich, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. Contemp. Math. 568, 225–240 (2012)

    Article  MathSciNet  Google Scholar 

  31. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Biranvand.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvish, V., Jantakarn, K., Kaewcharoen, A. et al. A Convergence Theorem for Solving Generalized Mixed Equilibrium Problems and Finding Fixed Points of a Weak Bregman Relatively Nonexpansive Mappings in Banach Spaces. Acta Math Vietnam 47, 553–569 (2022). https://doi.org/10.1007/s40306-021-00438-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-021-00438-x

Keywords

Mathematics Subject Classification (2010)

Navigation