Skip to main content
Log in

Discovery, properties and applications of tungsten and its inorganic compounds

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

After a historical excursus, the basic properties of tungsten are summarized, followed by selected classes of inorganic compounds (tungsten halides and oxyhalides, tungsten oxides, Magnéli phases and tungsten bronzes, iso- and heteropolyoxotungstates). Subsequently, the specifics of non-sag tungsten wire as well as tungsten carbide and a variety of tungsten alloys, the green bullets and the suppression of tungsten’s leachability are described. In conclusion, tungsten’s medicinal role is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

(image courtesy of GTP)

Fig. 19

(image courtesy of GTP)

Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

(images courtesy of GTP)

Fig. 32

(images courtesy of OSRAM GmbH)

Fig. 33
Fig. 34
Fig. 35

(image courtesy of GTP)

Fig. 36

(image courtesy of GTP)

Similar content being viewed by others

Notes

  1. In addition to the traditional formulae of IPOT and HPOT, the alternative descriptions visualize the polyhedral surroundings of the poly- and heteroatoms.

  2. A net ionic equation shows only the ions that are changed during the course of the reaction, while the complete ionic equation also includes spectator ions. The net ionic equation can be easily compiled by balancing the overall charge. The molecular equation can be readily derived from the net ionic equation. The chemical equation provides an invaluable guideline for the successful preparation of a compound.

  3. See Footnote 1.

  4. The Swiss chemist Jean Charles Galissard de Marignac published his papers under "M.C. Marignac".

    It should be noted that "M" stands for "Monsieur" and is not the initial of one of his given names.

  5. Trivacant Keggin anions are characterized by two types. Type B: A complete W3O13 group has been removed from the intact Keggin anion. Type A: Three adjacent metal atoms belonging to three different W3O13 groups have been taken away.

  6. Carbon black (subtypes are acetylene black, channel black, furnace black, lamp black and thermal black) is a material produced by the incomplete combustion of heavy petroleum products such as fluid catalytic cracking (FCC) tar, coal tar, or ethylene cracking tar.

  7. Eighteen-karat gold is composed of 75% gold, which is alloyed with other metals to make it strong enough for everyday wear.

  8. Electronic work function, energy (or work) required to withdraw an electron completely from a metal surface. This energy is a measure of how tightly a particular metal holds its electrons—that is, of how much lower the electron’s energy is when present within the metal than when completely free. The work function is important in applications involving electron emission from metals, as in photoelectric devices and cathode-ray tubes.

Abbreviations

aka:

also known as

AMT:

Ammonium metatungstate

APT:

Ammonium paratungstate

b.p.:

Boiling point

BET:

Brunauer–Emmett–Teller

CS:

Crystallographic shear

DTA:

Differential thermal analysis

EDS:

Energy dispersive X-ray spectroscopy

ESI-MS:

Electrospray ionization mass spectrometry

ESR:

Electron spin resonance, aka EPR (electron paramagnetic resonance)

FT-IR:

Fourier-transform infrared spectroscopy

GTP:

Global Tungsten & Powders Corp.

HATB:

Hexagonal ammonium tungsten bronze

HPOM:

Heteropolyoxometalate(s)

HPOMo:

Heteropolyoxomolybdate(s)

HPOT:

Heteropolyoxotungstate(s)

ICP-AES:

Inductively coupled plasma atomic emission spectroscopy

IPOT:

Isopolyoxotungstate(s)

K:

Kelvin

kPa:

Kilopascal (101.3 kPa = 1 atm)

MAS:

Magic angle spinning

MIM:

Metal injection molding

m.p.:

Melting point

MS:

Mass spectrometry/mass spectrometer

NMR:

Nuclear magnetic resonance

OES:

Optical emission spectroscopy

PM:

Powder metallurgy

POM:

Polyoxometalate(s)

SEM:

Scanning electron microscopy

TA:

Thermal analysis

TBO:

Tungsten blue oxide

TEM:

Transmission electron microscopy

TG:

Thermal gravimetry

UV–Vis:

Ultraviolet visible spectroscopy

XAS:

X-ray absorption spectroscopy

XPS:

X-ray photoelectron spectroscopy, aka ESCA (electron spectroscopy for chemical analysis)

XRD:

X-ray diffraction

Z :

Degree of protonation; also: number of formula units in a unit cell

References

  1. Trasorras JRL, Wolfe TA, Knabl W, Venezia C, Lemus R, Lassner E, Schubert WD, Lüderitz E, Wolf HU (2016) Tungsten, tungsten alloys, and tungsten compounds. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, New York, pp 1–53

    Google Scholar 

  2. Kean S (2011) The disappearing spoon and other true tales of madness, love, and the history of the world from the periodic table of the elements. Back Bay Books, Little, Brown and Company, New York, pp 91–94

    Google Scholar 

  3. Lunk HJ, Hartl H (2017) Discovery, properties and applications of molybdenum and its compounds. ChemTexts 3:13

    Google Scholar 

  4. Technical data for tungsten. http://www.periodictable.com/Elements/074/data.html

  5. PLANSEE-Tungsten. https://www.plansee.com/en/materials/tungsten.html

  6. Leyendecker J (1998) β-Wolfram—Existenz, Struktur und Stabilität (β-tungsten—existence, structure and stability), Dissertation [in German], Ludwig Maximilian University of Munich

  7. Kiss AB (1998) Thermoanalytical study of the composition of β-tungsten. J Therm Anal Calor 54:815–824

    CAS  Google Scholar 

  8. Stewart GR (2015) Superconductivity in the A15 structure. Phys C Superconduct Appl 514:28–35

    CAS  Google Scholar 

  9. Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118. Chem Eur J 15:186–197

    PubMed  Google Scholar 

  10. Pyykkö P, Atsumi M (2009) Molecular double-bond covalent radii for elements Li–E112. Chem Eur J 15:12770–12779

    PubMed  Google Scholar 

  11. Fergusson JE (1967) Halide chemistry of chromium, molybdenum and tungsten. In: Gutman V (ed) Halogen chemistry, vol III. Academic Press, New York, pp 227–303

    Google Scholar 

  12. Abramenko YV, Gornovskii AD, Sergienko VS, Abramenko VL (1992) Coordination chemistry of tungsten halides and oxyhalides. Zh Neorg Khim J Inorg Chem 37:2689–2711. (Абраменко ЮВ, Горновский АД, Сергиенко ВС, Абраменко ВЛ (1992) Координационная химия галогенидов и оксогал-огенидов вольфрама. Ж Неорг Хим 37:2689–2711) [in Russian]

  13. Meyer JT, McCleverty JA (eds) (2003) Comprehensive coordination chemistry II, from biology to nanotechnology, vol 4, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  14. Cotton FA, Rice CE (1978) Tungsten pentachloride. Acta Crystallogr B34:2833–2834

    CAS  Google Scholar 

  15. Nägele A (2001) Synthese und Untersuchungen von Clusterverbindungen der Übergangsmetalle Mo, W und Nb; Reaktivität bei Festkörperreaktionen (Synthesis and investigation of cluster compounds of the transition metals Mo, W and Nb; reactivity of solid-state reactions), Dissertation [in German], Universität Tübingen

  16. Siepmann R, Schnering HG, Schäfer H (1967) Tungsten trichloride [W6Cl12]Cl6. Angew Chem 79:637

    Google Scholar 

  17. Nägele A, Glaser J, Meyer HJ (2001) W6Cl18: Neue Synthesen, neue Strukturverfeinerung, elektronische Struktur und Magnetismus (W6Cl18: new syntheses, new structure refinement, electronic structure and magnetism). Z Anorg Allg Chem [in German] 627:244–249

    Google Scholar 

  18. Dill S, Glaser J, Ströbele M, Tragl S, Meyer HJ (2004) Überschreitungen der konventionellen Zahl von Clusterelektronen in Metallhalogeniden des M6X12-Typs: W6Cl18, (Me4N)2[W6Cl18] und Cs2[W6Cl18] (Beyond the conventional number of electrons in M6X12 type metal halide clusters: W6Cl18, (Me4N)2[W6Cl18], and Cs2[W6Cl18]). Z Anorg Allg Chem [in German] 630:987–992

    CAS  Google Scholar 

  19. Weisser M, Tragl S, Meyer HJ (2009) From cluster to cluster: structural transformation reactions among tungsten chloride clusters. J Clust Sci 20:249–258

    CAS  Google Scholar 

  20. Ströbele SM, Meyer HJ (2010) The new binary tungsten iodide W15I47. Z Anorg Allg Chem 636:62–66

    Google Scholar 

  21. Priest HF, Swinehert CF (2007) Anhydrous metal fluorides. In: Audrieth LF (ed) Inorganic syntheses, vol III. Wiley-Interscience, New York, pp 171–183

    Google Scholar 

  22. Lassner E, Schubert WD (1999) Tungsten: properties, chemistry, technology of the elements, alloys, and chemical compounds. Springer Science & Business Media, New York

    Google Scholar 

  23. Lunk HJ, Petke W (1974) Eine bequeme Methode zur Darstellung von Wolframoxidtetrachlorid (A convenient method for the preparation of tungsten oxytetrachloride). Z Chem [in German] 14:365

    CAS  Google Scholar 

  24. Zheng Y, Peters K, Siepmann R, v. Schnering HG (1998) Crystal structure of tungsten pentabromide, WBr5. Z Kristallogr New Cryst Struct 213:499

    Google Scholar 

  25. Tillack J, Eckerlin PP, Dettingmeijer JH (1966) Darstellung und Eigenschaften von Wolframdioxid-dijodid, WO2J2 (Preparation and properties of tungsten dioxydiiodide, WO2I2). Angew Chem [in German] 78:451

    Google Scholar 

  26. Schäfer H, Giegling D, Rinke K (1968) Zum System W/O/J. III. Das thermische Verhalten von WO2J2 (About the system W/O/I. III. Thermal behavior of WO2I2). Z Anorg Allg Chem [in German] 357:25–29

    Google Scholar 

  27. Gupta SK (1969) Thermal stabilities of tungsten oxyiodides. J Phys Chem 73:4086–4094

    CAS  Google Scholar 

  28. Krebs B, Brendel C, Schäfer H (1987) Über die Reaktion von W3O mit lod. Darstellung, Kristallstruktur und Eigenschaften von WOI3 (On the reaction of W3O with iodine: preparation, crystal structure, and properties of WOI3). Z Anorg Allg Chem [in German] 553:127–135

    CAS  Google Scholar 

  29. Sahle W (1983) Electron microscopy studies of tungsten oxides in the range WO3–WO2.72. Phase relations, defect structures, structural transformations and electrical conductivity. Chem Commun Univ Stockholm 4:1–53

    Google Scholar 

  30. Migas DB, Shaposhnikov VL, Rodin VN, Borisenko VE (2010) Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3. J Appl Phys 108:093713-1–093713-7

    Google Scholar 

  31. Vogt T, Woodward PM, Hunter BA (1999) The high-temperature phases of WO3. J Solid State Chem 144:209–215

    CAS  Google Scholar 

  32. Gerand G, Novogorocki G, Guenot J, Figlarz M (1979) Structural study of a new hexagonal form of tungsten trioxide. J Solid State Chem 29:429–434

    CAS  Google Scholar 

  33. Balázsi C, Farkas-Jahnke M, Kotsis I, Petrás L, Pfeifer J (2001) The observation of cubic tungsten trioxide at high-temperature dehydration of tungsten acid hydrate. Solid State Ionics 141–142:411–416

    Google Scholar 

  34. Szilágyi IM, Wang L, Gouma PI, Balázsi C, Madarász J, Pokol G (2009) Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater Res Bull 44:505–508

    Google Scholar 

  35. Schmidt P, Binnewies M, Glaum R, Schmidt M (2013) Chemical vapor transport reactions methods, materials, modeling. INTECH open science/open minds, doi: 10.5772/55547. Chapter 9:227–305

    Google Scholar 

  36. Migas DB, Shaposhnikov VL, Rodin VN, Borisenko VE (2010) Tungsten oxides. II. The metallic nature of Magnéli phases. J Appl Phys 108:093714–1–093714-6

    Google Scholar 

  37. Wadsley AD (1967) Inorganic non-stoichiometric compounds. In: Mandelcorn L (ed) Non-stoichiometric compounds. Academic Press, New York

    Google Scholar 

  38. Canadell E, Whangbo MH (1991) Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides. Chem Rev 91:965–1034

    CAS  Google Scholar 

  39. Wöhler F (1824) Ueber das Wolfram. (About tungsten). Ann Physik [in German] 78:345–358

    Google Scholar 

  40. Dickens PG, Whittingham MS (1968) The tungsten bronzes and related compounds. Rev Chem Soc 22:30–44

    CAS  Google Scholar 

  41. Lunk HJ, Ziemer B, Salmen M, Heidemann D (1993–1994) What is behind ‘tungsten blue oxides’? Int J Refract Metals Hard Mater 12:17–26

    Google Scholar 

  42. Lunk HJ, Salmen M, Heidemann D (1998) Solid-state 1H-NMR studies of different tungsten blue oxides and related substances. Int J Refract Metals Hard Mater 16:23–30

    CAS  Google Scholar 

  43. Szilágyi IM, Hange F, Madarász J, Pokol G (2006) In situ HT-XRD study on the formation of hexagonal ammonium tungsten bronze by partial reduction of ammonium paratungstate tetrahydrate. Eur J Inorg Chem 2006:3413–3418

    Google Scholar 

  44. Zollfrank C, Gutbrod K, Wechsler P, Guggenbichler JP (2012) Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces. Mat Sci Eng C32:47–54

    Google Scholar 

  45. Lunk HJ, Guggenbichler JP (2014) Antimikrobielle Wirkung von Übergangsmetalloxiden und ihr Einsatz in Medizin, Industrie und Haushalt (Antimicrobial properties of transition metal oxides and their application in medicine, industry and household). Leibniz Sozietät, Vortrag in der Klasse für Naturwissenschaften und Technikwissenschaften am 8. Mai 2014 (Presentation at the section “Natural and technical sciences” on May 8th, 2014). [in German] Leibniz Online 16:1–12. http://leibnizsozietaet.de/wp-content/uploads/2014/11/LunkGuggenbichler.pdf

  46. Thiele A, Fuchs J (1979) Struktur und Schwingungsspektren von Monomolybdaten und Monowolframaten organischer Kationen (Structure and vibrational spectra of monomolybdates and monotungstates with organic cations). Z Naturforsch [in German] 34b:145–154

    CAS  Google Scholar 

  47. Cruywagen JJ (2000) Protonation, oligomerization, and condensation reactions of vanadate(V), molybdate(VI), and tungstate(VI). Adv Inorg Chem 49:127–182

    CAS  Google Scholar 

  48. Fuchs J, Palm R, Hartl H (1996) K7HW5O19·10H2O—a novel isopolyoxotungstate(VI). Angew Chem Int Ed 35:2651–2653

    CAS  Google Scholar 

  49. Lindqvist I (1950) Crystal structure studies on anhydrous sodium molybdates and tungstates. Acta Chem Scand 4:1066–1074

    CAS  Google Scholar 

  50. Okada K, Morikawa H, Marumo F, Iwai S (1975) Disodium ditungstate. Acta Cryst B31:1200–1201

    CAS  Google Scholar 

  51. Zhai HJ, Xin Huang X, Waters T, Wang XB, O’Hair RAJ, Wedd AG, Wang LS (2005) Photoelectron spectroscopy of doubly and singly charged group VIB dimetalate anions: M2O7 2− MM′O7 2−, and M2O7 (M, M′ = Cr, Mo, W). J Phys Chem A109:10512–10520

    Google Scholar 

  52. Wang J, You JL, Sobol AA, Lu LM, Wang M, Wu J, Lv XM, Wan SM (2017) In-situ high temperature Raman spectroscopic study on the structural evolution of Na2W2O7 from the crystalline to molten states. J Raman Spectrosc 48:298–304

    CAS  Google Scholar 

  53. Wei Q, Shi H, Cheng X, Qin L, Ren G, Shu K (2010) Growth and scintillation properties of the Na2W2O7 crystal. J Crystal Growth 312:1883–1885

    CAS  Google Scholar 

  54. Janović DJ, Validžić ILJ, Mitrić M, Nedelković JM (2013) Crystal structure studies on plate/shelf like disodium ditungstate. Bull Mater Sci 36:149–152

    Google Scholar 

  55. Burtseva KG, Chernaya TS, Sirota MI (1978) Determination of crystal- and molecular structure of sodium paratungstate. Dokl Akad Nauk SSSR Proc USSR Acad Sci 243:104–107. (Бурцева КГ, Черная ТС, Сирота МИ (1978) Определение кристаллической и молекулярной структуры паравольфрамата натрия. Докл Акад Наук СССР 243:104–107) [in Russian]

  56. Fuchs J, Flindt EP (1979) Darstellung und Strukturuntersuchung von Polywolframaten—Ein Beitrag zur Aufklärung des Parawolframations A (Preparation and structure investigation of polytungstates. A contribution to the paratungstate A problem). Z Naturforsch [in German] 34b:412–422

    CAS  Google Scholar 

  57. Tolkačeva EO, Sergienko VS, Iljuchin AB, Meschkov SV (1997) Study of interaction of the anions WO4 2− and MoO4 2− with 1-oxyethylidenediphosphonic acid using 31P-NMR spectroscopy and single-crystal analysis. Crystal structure of Na8[W6O17(L*)2]·26H2O and Na6W7O24·14H2O. Zh Neorg Khim J Inorg Chem 42:752–764. (Toлкaчeва ЕО, Cеpгиенко ВС, Илюхин АБ, Mешкoв СВ (1997) Bзаимодействие аниoнoв WO4 2− и MoO4 2− с 1-oксиэтилидендифoсфoнoвoй кислoтoй по данным спектроскопии ЯМР 31P и рентгеноструктурного анализа. Кристаллическая структура Na8[W6O17(L*)2]·26H2O и Na6W7O24·14H2O. Ж Неорг Хим 42:752–764) [in Russian]

  58. D’Amour H, Altman R (1972) Die Kristallstruktur des Ammoniumparawolframat-tetrahydrats (NH4)10[H2W12O42]·4H2O. (Crystal structure of ammonium paratungstate tetrahydrate (NH4)10[H2W12O42]·4H2O). Z Kristsllogr [in German] 136:23–47

    Google Scholar 

  59. Hartl H, Palm R, Fuchs J (1993) Ein neuer Parawolframat-Typ (A new type of paratungstate). Angew Chem [in German] 105:1545–1547

    CAS  Google Scholar 

  60. Okada K, Morikawa H, Marumo F, Iwai S (1976) The crystal structure of K2W3O10. Acta Cryst B32:1522–1525

    CAS  Google Scholar 

  61. Chatterjee S, Mahapatraa PK, Singh K, Choudharyb RNP (2003) Structural, electrical and dielectric properties of Na2W3O10 ceramic. Mater Lett 57:2616–2620

    CAS  Google Scholar 

  62. Christian JB, Whittingham MS (2008) Structural study of ammonium metatungstate. J Solid State Chem 181:1782–1791

    CAS  Google Scholar 

  63. Viswanathan K (1974) Crystal structure of sodium tetratungstate, Na2W4O13. J Chem Soc, Dalton Trans 20:2170–2172

    Google Scholar 

  64. Fuchs J, Hartl H, Schiller W, Gerlach U (1975) Die Kristallstruktur des Tributylammoniumdekawolframats [(C4H9)3NH]4W10O32 (Crystal structure of tributylammonium decatungstate [(C4H9)3NH]4W10O32). Acta Cryst [in German] B32:740–749

    Google Scholar 

  65. Lindqvist I (1952) On the structure of the paratungstate ion. Acta Cryst 5:667–670

    CAS  Google Scholar 

  66. Lipscomb WN (1965) Paratungstate Ion. Inorg Chem 4:132–134

    CAS  Google Scholar 

  67. Lunk HJ, Čuvaev, Kolli ID, Spicyn VI (1968) Investigation of the structure of lithium, sodium and potassium paratungstate by proton magnetic resonance. Dokl Akad Nauk SSSR Proc USSR Acad Sci 181:357–360. (Лунк ХИ, Чуваев ВФ, Колли ИД, Спицын ВИ (1968) Исследование строения паравольфраматов лития, натрия и калия методом протонного магнитного резонанса (П.М.Р). Докл Акад Наук СССР 181:357–360) [in Russian]

  68. Weiss G (1969) Die Struktur des Parawolframations am Beispiel des Ammoniumparawolframates (NH4)10[H2W12O42]·10H2O (The structure of the paratungstate anion using the example of (NH4)10[H2W12O42]·10H2O. Z Anorg Allg Chem [in German] 368:279–283

    CAS  Google Scholar 

  69. Evans HT Jr, Prince E (1983) Location of internal hydrogen atoms in the paradodecatungstate polyanion by neutron diffraction. J Am Chem Soc 105:4838–4839

    CAS  Google Scholar 

  70. Hempel K, Saradshow M (1967) Löslichkeit und stabile Kristallhydrate im System Ammoniumparawolframat-Wasser (Solubility and stable hydrates in the system ammonium paratungstate–water). Kristall Technik [in German] 3:437–445

    Google Scholar 

  71. Averbuch-Pouchot MT, Tordjman I, Durif A, Guitel JC (1979) Structure d’un paratungstate d’ammonium (NH4)6H6W12O42·10H2O (Structure of ammonium paratungstate (NH4)6H6W12O42·10H2O). Acta Cryst [in French] B35:1675–1677

    CAS  Google Scholar 

  72. Evans HT Jr, Kortz U, Jameson GB (1993) Structure of potassium paradodecatungstate 71/2-hydrate. Acta Cryst C49:856–861

    CAS  Google Scholar 

  73. van Put JW (1991) Ammonium paratungstate as a raw material for the manufacturing of lamp filament tungsten wire. Dissertation, Delft University

  74. van Put JW, Witkamp GJ, van Rosmalen GM (1993) Formation of ammonium paratungstate tetra- and hexa-hydrate. I: stability. Hydrometallurgy 34:187–201

    Google Scholar 

  75. Lunk HJ, Fait M, Ziemer B, Fuchs J, Hartl H (1999) Formation of heterotypic substitutional solid solutions (NH4)10-xKx[H2W12O42nH2O in the ammonium paratungstate ’Z’/potassium paratungstate ’Z’ system. Z Anorg Allg Chem 625:673–680

    CAS  Google Scholar 

  76. Berzelius JJ (1826) Beitrag zur näheren Kenntniss des Molybdäns (Contribution to a better understanding of molybdenum). Ann Phys [in German] 82:369–392

    Google Scholar 

  77. Keggin JF (1933) Structure of the molecule of 12-phosphotungstic acid. Nature 131:908–909

    CAS  Google Scholar 

  78. Keggin JF (1934) The structure and formula of 12-phosphotungstic acid. Proc R Soc A144:75–100

    Google Scholar 

  79. Pope MT (2013) Happy birthday Keggin structure! Eur J Inorg Chem 2013:1561

    Google Scholar 

  80. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo

    Google Scholar 

  81. Pope MT (1991) Molybdenum oxygen chemistry. Progr Inorg Chem 39:181–257

    Google Scholar 

  82. Pope MT, Müller A (eds) (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer Academic Publishers, New York

    Google Scholar 

  83. Baker LCW, Glick DC (1998) Present general status of understanding of heteropoly electrolytes and a tracing of some major highlights in the history of their elucidation. Chem Rev 98:3–50

    CAS  PubMed  Google Scholar 

  84. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199–217

    CAS  PubMed  Google Scholar 

  85. Sadakane M, Steckhan E (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98:219–237

    CAS  PubMed  Google Scholar 

  86. Müller A, Peters F, Pope MT, Gatteschi D (1998) Polyoxometalates: very large clusters–nanoscale magnets. Chem Rev 98:239–271

    PubMed  Google Scholar 

  87. Klemperer WG, Wall CG (1998) Polyoxoanion chemistry moves toward the future: from solids and solutions to surfaces. Chem Rev 98:297–306

    CAS  PubMed  Google Scholar 

  88. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98:327–357

    CAS  PubMed  Google Scholar 

  89. Rohmer MM, Bénard M, Blaudeau JP, Maestre JM, Poblet JM (1998) From Lindqvist and Keggin ions to electronically inverse hosts: ab initio modelling of the structure and reactivity of polyoxometalates. Coord Chem Rev 178–180:1019–1049

    Google Scholar 

  90. Kazansky LP, ChaquinP Fournier M, Hervé G (1998) Analysis of 183W and 17O NMR chemical shifts in polyoxometalates by extended Hückel mo calculations. Polyhedron 17:4353–4364

    CAS  Google Scholar 

  91. Yamase T, Pope MT (eds) (2002) Polyoxometalate chemistry for nano-composite design. Kluwer Academic Publishers, New York

    Google Scholar 

  92. Poblet JM, López X, Bo C (2003) Ab initio and DFT modelling of complex materials: towards the understanding of electronic and magnetic properties of polyoxometalates. Chem Soc Rev 32:297–308

    CAS  PubMed  Google Scholar 

  93. Liu S, Volkmer D, Kurth DG (2003) Functional polyoxometalate thin films via electrostatic layer-by-layer self-assembly. J Cluster Sci 14:405–419

    CAS  Google Scholar 

  94. Brian LE, Baronetti GT, Thomas HJ (2003) The state of the art on Wells–Dawson heteropoly-compounds: a review of their properties and applications. Appl Catal A 256:37–50

    Google Scholar 

  95. Hill CL (2004) Polyoxometalates: reactivity. In: Wedd AG (ed) Comprehensive coordination chemistry II: from biology to nanotechnology, vol 4. Elsevier, Amsterdam, pp 679–750

    Google Scholar 

  96. Mizuno N, Yamaguchi K, Kamata K (2005) Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coord Chem Rev 249:1944–1956

    CAS  Google Scholar 

  97. Yun G, Changwen H, Hong L (2005) Research progress in synthesis and catalysis of polyoxometalates. Prog Nat Sci 15:385–394

    Google Scholar 

  98. Tajima Y (2005) Polyoxotungstates reduce the β-lactam resistance of methicillin-resistant staphylococcus aureus. Mini-Rev Med Chem 5:255–268

    CAS  PubMed  Google Scholar 

  99. Fedotov MA, Maksimovskaya RI (2006) NMR structural aspects of the chemistry of V, Mo, W polyoxometalates. J Struct Chem 47:952–978

    CAS  Google Scholar 

  100. Michailovski A, Patzke GR (2006) Hydrothermal synthesis of molybdenum oxide based materials: strategy and structural chemistry. Chem Eur J 12:9122–9134

    CAS  PubMed  Google Scholar 

  101. He T, Yao J (2006) Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Prog Mater Sci 51:810–879

    CAS  Google Scholar 

  102. Gouzerh P, Che M (2006) From Scheele and Berzelius to Müller—Polyoxometalates (POMs) revisited and the “missing link” between the bottom up and top down approaches. Actual Chim 298:9–22

    CAS  Google Scholar 

  103. Long DL, Tsunashima R, Cronin L (2010) Polyoxometallate als Bausteine für funktionelle Nanosysteme (Polyoxometalates as building blocks for functional nanosystems). Angew Chem 122:1780–1803

    Google Scholar 

  104. (2012) Themed collection: polyoxometalate cluster science 2010. Chem Soc Rev 41:7325–7646

  105. Lunk HJ (2014) In: Steudel R, Huheey JE, Keiter EA, Keiter RL (eds) Inorganic chemistry—principles of structure and reactivity, 5th edn. Walter de Gruyter GmbH, Berlin/Boston, pp 967–984. (Anorganische Chemie – Prinzipien von Struktur und Reaktivität, 5th edn. Walter de Gruyter GmbH, Berlin/Boston pp 967–984) [in German]

  106. Monakhov KY, Moors M, Kögerler P (2017) Perspectives for polyoxometalates in single-molecule electronics and spintronics, vol 69. In: van Eldik R, Cronin L (eds) Adv Inorg Chem. Academic Press, Elsevier, Amsterdam, pp 251–286

    Google Scholar 

  107. Soriano-López J, Song F, Patzke GR, Galan-Mascaros JR (2018) Photoinduced oxygen evolution catalysis promoted by polyoxometalate salts of cationic photosensitizers. Front Chem. https://www.frontiersin.org/articles/10.3389/fchem.2018.00302/full

  108. Sullivan KP, Yin Q, Collins-Wildman DL, Tao M, Geletii YV, Musaev DG, Lian T, Hill CL (2018) Multi-tasking POM systems. Front Chem 6:1–10 (Article 365)

    Google Scholar 

  109. Kortz U, Sadakane M (2019) Celebrating polyoxometalates (cluster issue). Eur J Inorg Chem 2019:336–541 (guest editors)

    Google Scholar 

  110. Zhang Z, Li HL, Wang YL, Yang GY (2019) Syntheses, structures, and electrochemical properties of three new acetate-functionalized zirconium-substituted germanotungstates: from dimer to tetramer. Inorg Chem 58:2372–2378

    CAS  PubMed  Google Scholar 

  111. Martín S, Takashima Y, Lin CG, Song YF, Miras HN, Cronin L (2019) Integrated synthesis of gold nanoparticles coated with polyoxometalate clusters. Inorg Chem 58:4110–4116

    PubMed  Google Scholar 

  112. Tian AX, Yang ML, Fu YB, Ying J, Wang XL (2019) Electrocatalytic and Hg2+ fluorescence identifiable bifunctional sensors for a series of Keggin compounds. Inorg Chem 58:4190–4200

    CAS  PubMed  Google Scholar 

  113. Wang YL, Zhao JW, Zhang Z, Sun JJ, Li XY, Yang BF, Yang GY (2019) Enentiomeric polyoxometalates based on malate chirality-inducing tetra-ZrIV substituted Keggin dimeric clusters. Inorg Chem 58:4657–4664

    CAS  PubMed  Google Scholar 

  114. Marignac MC (1864) Recherches sur les acides silicotungstiques, et note sur la constitution de l’acide tungstique (Investigations of silicotungstic acids, and a note about the structure of tungstic acid). Ann Chim Phys [4] [in French] 3:5–76

    Google Scholar 

  115. Baker LCW, Figgis JS (1970) New fundamental type of inorganic complex: hybrid between heteropoly and conventional coordination complexes. Possibilities for geometrical isomerisms in 11-, 12-, 17-, and 18-heteropoly derivatives. J Am Chem Soc 92:3794–3797

    CAS  Google Scholar 

  116. Kondinski A, Parac-Vogt TN (2018) Keggin structure, quō vādis? Front Chem 6:346

    PubMed  PubMed Central  Google Scholar 

  117. Rosenheim A, Jaenicke J (1917) Zur Kenntnis der Iso- und Heteropolysäuren. XV. Mitteilung Über Heteropolywolframate und einige Heteropolymolybdänate (About iso- and heteropoly acids. XV. Information about heteropoly tungstates and several heteropolymolybdates). Z Anorg Allg Chem [in German] 101:235–275

    CAS  Google Scholar 

  118. Čuvaev VF, Lunk HJ, Spicyn VI (1968) Investigation of the structure of sodium and potassium metatungstate by proton magnetic resonance. Dokl Akad Nauk SSSR Proc USSR Acad Sci 181:133–136. (Чуваев ВФ, Лунк ХИ, Спицын ВИ (1968) Исследование строения метавольфраматов натрия и калия методом протонного магнитного резонанса (П.М.Р). Докл Акад Наук СССР 181:133–136) [in Russian]

  119. Centralchemical consulting. Heavy liquid for float sink separations. https://www.chem.com.au/heavy_liquid.html

  120. Kamps R, Plewinsky B, Miehe M, Wetz K (1984) Agent for the separation of dissolved and/or undissolved materials of different buoyancy densities or densities by means of solutions of true metatungstates. US Patent 4557718A

  121. Krukowski ST (1988) Sodium metatungstate: a new heavy-mineral separation medium for the extraction of conodonts from insoluble residues. J Paleontol 62:314–316

    Google Scholar 

  122. Fait MJG, Moukhina E, Feist M, Lunk HJ (2016) Thermal decomposition of ammonium paratungstate tetrahydrate: new insights by a combined thermal and kinetic analysis. Thermochim Acta 637:38–50

    CAS  Google Scholar 

  123. Matsumoto KY, Kobayashi A, Sasaki Y (1975) The Crystal Structure of β-K4SiW12O40·9H2O containing an isomer of the Keggin ion. Bull Chem Soc Jpn 48:3146–3151

    CAS  Google Scholar 

  124. Tézé A, Cadot E, Béreau V, Hervé G (2001) About the Keggin isomers: crystal structure of [N(C4H9)4]4-γ-[SiW12O40], the γ-isomer of the Keggin ion. Synthesis and 183W NMR characterization of the mixed γ-[SiMo2W10O40]n (n = 4 or 6). Inorg Chem 40:2000–2004

    PubMed  Google Scholar 

  125. Sartzi H, Miras HN, Vilà-Nadal L, Long DL, Cronin L (2015) Trapping the δ isomer of the polyoxometalate-based Keggin cluster with a tripodal ligand. Angew Chem Int Ed 54:15488–15492

    CAS  Google Scholar 

  126. Mialane P, Dolbecq A, Lisnard L, Mallard A, Marrot J, Sécheresse F (2002) [ɛ-PMo12O36(OH)4{La(H2O)4}4]5+: the first ɛ-PMo12O40 Keggin ion and its association with the two-electron-reduced α-PMo12O40 isomer. Angew Chem Int Ed 41:2398–2401

    CAS  Google Scholar 

  127. Johansson G (1960) On the crystal structure of some basic aluminum salts. Acta Chem Scand 14:771–773

    CAS  Google Scholar 

  128. Kampf AR, Hughes JM, Nash BP, Marty J (2017) Kegginite, Pb3Ca3[AsV12O40(VO)]·20H2O, a new mineral with a novel ɛ-isomer of the Keggin anion. Am Mineral 102:461–465

    Google Scholar 

  129. Mohs scale of mineral hardness. https://en.wikipedia.org/wiki/Mohs_scale_of_mineral_hardness

  130. Wells AF (1940) X. Finite complexes in crystals: a classification and review. Lond Edinb Dubl Phil Mag 30:103–134

    CAS  Google Scholar 

  131. Dawson B (1953) The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62)·14H2O. Acta Cryst 6:113–126

    CAS  Google Scholar 

  132. Hayashi A, Wihadi MNK, Ota H, López X, Ichihashi K, Nishihara S, Inoue K, Tsunoji N, Sano T, Masahiro Sadakane M (2018) Preparation of Preyssler-type phosphotungstate with one central potassium cation and potassium cation migration into the Preyssler molecule to form di-potassium-encapsulated derivative. ACS Omega 2018:2363–2373

    Google Scholar 

  133. Preyssler C (1970) Étude sur l’existence de l’anion 3 phospho 18 tungstique (Study on the existence of the anion 18-tungsto-3-phosphate). Bull Soc Chim Fr [in French] 1970:30–36

    Google Scholar 

  134. Alizadeh MH, Harmalker SP, Jeannin Y, Martin-Frère J, Pope MT (1985) A heteropolyanion with fivefold molecular symmetry that contains a nonlabile encapsulated sodium ion. The structure and chemistry of [NaP5W30O110]14−. J Am Chem Soc 107:2662–2669

    CAS  Google Scholar 

  135. Haider A, Zarschler K, Joshi SA, Smith RM, Lin Z, Mougharbel AS, Herzog U, Müller CE, Stephan H, Kortz U (2018) Preyssler-Pope-Jeannin polyanions [NaP5W30O110]14− and [AgP5W30O110]14−: microwave-assisted synthesis, structure, and biological activity. Z Anorg Allg Chem 644:752–758

    CAS  Google Scholar 

  136. Yasuda H, He LN, Sakakura T, Hu C (2005) Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate: the remarkable effects of metal substitution. J Catal 233:119–122

    CAS  Google Scholar 

  137. Liu H, Gomez-Garcia CJ, Peng J, Sha J, Li Y, Yan Y (2008) 3D-transition metal mono-substituted Keggin polyoxotungstate with an antenna molecule: synthesis, structure and characterization. Dalton Trans 2008:6211–6218

    Google Scholar 

  138. Xu Q, Wang X, Zhu Z, Yu D, Chen J, Hua Y, Wang C (2010) Synthesis, characterization and electrochemical properties of Keggin-type co-substituted heteropolyanion SiW11O39Co(II)(H2O)6−. Hainan-Shifan-Daxue-xuebao (J Hainan Normal Univ) Ziran kexue ban (Nat Sci) 23:278–282

    Google Scholar 

  139. Dianat S, Tangestaninejad S, Yadollahi B, Bordbar AK, Zarkesh-Esfahani SH, Habibi P (2014) In vitro antitumor activity of parent and nano-encapsulated mono cobalt-substituted Keggin polyoxotungstate and its ctDNA binding properties. Chem Biol Interact 215:25–32

    CAS  PubMed  Google Scholar 

  140. Zhang S, Wang KY, Cheng L, Wang C (2019) Preparation and characterization of monocobalt-substituted tungstosilicate/aniline/graphene nanocomposite. J Solid State Chem 272:118–125

    CAS  Google Scholar 

  141. Wassermann K, Lunk HJ, Palm R, Fuchs J (1994) A novel triply chromium(III)-substituted Keggin anion, [A-α-SiO4W9Cr3(OH)3O33]17−. Acta Cryst C50:348–350

    CAS  Google Scholar 

  142. Wassermann K, Palm R, Lunk HJ, Fuchs J, Steinfeld N, Stösser R (1995) Condensation of Keggin anions containing chromium(III) and aluminum(III), respectively. 1. Synthesis and X-ray structural determination of [{A-α-SiO4W9O30(OH)3Cr3}2(OH)3]11−. Inorg Chem 34:5029–5036

    CAS  Google Scholar 

  143. Wassermann K, Lunk HJ, Palm R, Fuchs J, Steinfeld N, Stösser R, Pope M (1996) Polyoxoanions derived from γ-[SiO4W10O32]8− containing oxo-centered dinuclear chromium(III) carboxylato complexes: synthesis and single-crystal structural determination of γ-[SiO4W10O32(OH)Cr2(OOCCH3)2(OH2)2]5−. Inorg Chem 35:3273–3279

    CAS  PubMed  Google Scholar 

  144. Compain JD, Mialane P, Dolbecq A, Mbomekallé IM, Marrot J, Sécheresse F, Duboc C, Rivière E (2010) Structural, magnetic, EPR, and electrochemical characterizations of a spin-frustrated trinuclear CrIII polyoxometalate and study of its reactivity with lanthanum cations. Inorg Chem 49:285–2858

    Google Scholar 

  145. Liu W, Christian JH, Al-Oweini R, Bassil BS, van Tol J, Atanasov M, Neese F, Dalal NS, Kortz U (2014) Synthesis, detailed characterization, and theoretical understanding of mononuclear chromium(III)-containing polyoxotungstates [CrIII(HXVW7O28)2]13− (X = P, As) with exceptionally large magnetic anisotropy. Inorg Chem 53:9274–9283

    CAS  PubMed  Google Scholar 

  146. Ginsberg AP (ed) (1990) Inorganic syntheses, vol 27. Willey Interscience, New York, pp 71–135

    Google Scholar 

  147. Cadot E, Thouvenot R, Tézé A, Hervé G (1992) Syntheses and multinuclear NMR characterizations of alpha-[SiMo2W9O39]8− and alpha-[SiMo3−xVxW9O40](4+x)− (x = 1, 2) heteropolyoxometalates. Inorg Chem 31:4128–4133

    CAS  Google Scholar 

  148. Anderson JS (1937) Constitution of the poly-acids. Nature 140:850

    CAS  Google Scholar 

  149. Evans HT Jr (1948) The crystal structures of ammonium and potassium molybdotellurates. J Am Chem Soc 70:1291–1292

    CAS  Google Scholar 

  150. Blazevic A, Rompel A (2016) The Anderson-Evans polyoxometalate: from inorganic building blocks via hybrid organic–inorganic structures to tomorrows “Bio-POM”. Coord Chem Rev 307:42–64

    CAS  Google Scholar 

  151. Liu W, Lin Z, Bassil BS, Al-Oweini R, Kortz U (2015) Synthesis and structure of hexatungstochromate(III), [H3CrIIIW6O24]6−. Chimia 69:537–540

    CAS  PubMed  Google Scholar 

  152. Gumerova NI, Fraile TC, Roller A, Giester G, Pascual-Borràs M, Ohlin CA, Rompel A (2019) Direct single- and double-side triol-functionalization of the mixed type Anderson polyoxotungstate [Cr(OH)3W6O21]6−. Inorg Chem 58:106–113

    CAS  PubMed  Google Scholar 

  153. Bijelic A, Rompel A (2017) Ten good reasons for the use of the tellurium-centered Anderson–Evan polyoxotungstate in protein crystallography. Acc Chem Res 50:144–448

    Google Scholar 

  154. Mauracher SG, Molitor C, Al-Oweini R, Kortz U, Rompel A (2014) Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate(VI) in a single crystal. Acta Cryst D70:230–315

    Google Scholar 

  155. Molitor C, Bijelic A, Rompel A (2016) In situ formation of the first proteinogenically functionalized [TeW6O24O2(Glu)]7− structure reveals unprecedented chemical and geometrical features of the Anderson-type cluster. Chem Commun 52:12286–12289

    CAS  Google Scholar 

  156. Bijelic A, Rompel A (2018) Polyoxometalates: more than a phasing tool in protein crystallography. Chem Texts 4:10

    Google Scholar 

  157. Peacock RD, Weakley TJR (1971) Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. J Chem Soc A 1971:1836–1839

    Google Scholar 

  158. Peacock RD, Weakley TJR (1971) Heteropolytungstate complexes of the lanthanide elements. Part II. Electronic spectra: a metal-ligand charge-transfer transition of cerium(III). J Chem Soc A 1971:1937–1940

    Google Scholar 

  159. Iball J, Low JN, Weakley TJR (1974) Heteropolytungstate complexes of the lanthanoid elements. Part III. Crystal structure of sodium decatungstocerate(IV)–water (1/30). J Chem Soc, Dalton Trans 1974:2021–2024

    Google Scholar 

  160. Rosu C, Weakley TJR (1998) Redetermination of sodium [bis(pentatungstato)cerate(IV)](8–) 30 hydrate, Na8[Ce(W5O18)2]·30H2O. Acta Cryst C54:IUC9800047. https://doi.org/10.1107/s0108270198099363

    Article  Google Scholar 

  161. Moriyasu S, Toshihiro Y (1993) Crystal structure and luminescence site of Na9[CeO8W10O28]·2H2O. Bull Chem Soc Jpn 66:444–449

    Google Scholar 

  162. Xue GL, Liu B, Wang WL, Li QD, Li HX (2002) Synthesis and crystal structure of Na9[CeO8W10O28]·34H2O. Acta Chim Sinica 60:2022–2028

    CAS  Google Scholar 

  163. Yang P, Lin Z, Alfaro-Espinoza G, Ullrich MS, Rat CI, Silvestru C, Kortz U (2016) 19-Tungstodiarsenate(III) functionalized by organoantimony(III) groups: tuning the structure–bioactivity relationship. Inorg Chem 55:251–258

    CAS  PubMed  Google Scholar 

  164. Jeannin Y, Fournier M (1987) Nomenclature of polyanions. Pure Appl Chem 59:1529–1548

    CAS  Google Scholar 

  165. Jeannin Y (1998) The nomenclature of polyoxometalates: how to connect a name and a structure. Chem Rev 98:51–76

    CAS  PubMed  Google Scholar 

  166. Lunk HJ (2015) Incandescent lighting and powder metallurgical manufacturing of tungsten wire. ChemTexts 1:3

    Google Scholar 

  167. Pácz A (1922) Metal and its manufacture. US Patent 1,410,499

  168. Welsch G (1994) The evolution of tungsten lamp wire. In: Dalder ENC, Grobstein T, Olsen CS (eds) Evolution of refractory metals and alloys. The Minerals, Metals & Materials Society, Pittsburgh, pp 201–218

    Google Scholar 

  169. Gaal I, Schade P, Harmat P, Horacsek O, Bartha L (2006) Contradictions and new aspects of the bubble model of doped tungsten wires. Int J Refract Met Hard Mat 24:311–320

    CAS  Google Scholar 

  170. Schade P (2010) 100 years of doped tungsten wire. Int J Refract Met Hard Mat 28:648–660

    CAS  Google Scholar 

  171. Salmen M, Lunk HJ, Gahn AG, Altmann B, Fait M (1998) Method of manufacturing a non-sag tungsten wire for electric lamps. US Patent 5,795,366

  172. Lunk HJ, Stevens HJ, Patrician TJ, Martin III HD (2000) Method of making non-sag tungsten wire. US Patent 6,129,890

  173. Lunk HJ, Salmen M, Stevens HJ (2000) Method of making non-sag tungsten wire for electric lamps. US Patent 6,165,412

  174. Lunk HJ, Salmen M, Nached AS, Winnicka MB, Stevens HJ (2002) Boron addition for making potassium-doped tungsten. US Patent 6,478,845

  175. Kolaska H (2007) Hartmetall—gestern, heute und morgen (Hardmetal—yesterday, today and tomorrow). Metall [in German] 61:825–832

    Google Scholar 

  176. Ortner HM, Ettmayer P, Kolaska H (2014) The history of the technological progress of hard metals. Int J Refract Met Hard Mat 44:148–159

    CAS  Google Scholar 

  177. Pierson HO (1992) Handbook of chemical vapor deposition (CVD): principles, technology, and applications. William Andrew Inc. carbide fine powders. Ceramics Intern 41B:1271–1277

    Google Scholar 

  178. Luković J, Babić B, Bučevac D, Prekajski M, Pantić J, Baščarević Z, Matovića B (2015) Synthesis and characterization of tungsten carbide fine powders. Ceramics Intern 41B:1271–1277

    Google Scholar 

  179. Tretyakov LI, Klyachko LI (1998) On the history of domestic cemented carbides. Tsvetnye Metally J Non-ferrous Met 8:47–56. (Третьяков ВИ, Клячко ЛИ (1998) К истории отечественных твёрдых сплавов. Цветные металлы 8:47–56) [in Russian]

  180. Konyashin I, Klyachko LI (2015) History of cemented carbides in the Soviet Union. Int J Refract Met Hard Mat 49:9–26

    CAS  Google Scholar 

  181. Zerr A, Eschnauer H, Kny E (2012) Metallic hard metals (cemented carbides). In: Hard materials, Chapter 3. Ullmann’s Encyclopedia of Industrial Chemistry

  182. Upadhyaya GS (1998) Cemented tungsten carbides: production, properties and testing. Noyes Publications, Westwood

    Google Scholar 

  183. Toxic substances portal—tungsten. https://www.atsdr.cdc.gov/phs/phs.asp?id=804&tid=157

  184. Toxicological profile for tungsten (2005) US Department of Health and Human Services, Public Health Service Agency for Toxic Substances and DiseasecRegistry. https://www.atsdr.cdc.gov/toxprofiles/tp186-c6.pdf

  185. US Department of the Interior, Director’s Order No. 219: use of nontoxic ammunition and fishing tackle. https://www.documentcloud.org/documents/3479687

  186. The US Secretary of the Interior, Order No. 3346: revocation of the United States Fish and Wildlife Service Director’s Order No. 219 (use of nontoxic ammunition and fishing tackle). https://www.doi.gov/sites/doi.gov/files/uploads/order_no._3346.pdf

  187. Mikko D (2000) US Military “Green Bullet”. http://www.firearmsid.com/Feature%20Articles/GreenBullets/GreenBullets.htm

  188. A proposed rule by the Fish and Wildlife Service on 03/15/2004: migratory bird hunting; approval of three shot types—tungsten–bronze–iron, tungsten–iron and tungsten–tin–bismuth—as nontoxic for hunting waterfowl and coots. Federal Register/Vol. 69, 50 CFR Part 20, RIN 1018-AT32, 03/15/2004

  189. Tungsten and selected tungsten compounds, tungsten [7440-33-7], sodium tungstate [13472-45-2], tungsten trioxide [1314-35-8]. Review of toxicological literatures, prepared for Scott Masten, National Institute of Environmental Health Sciences, submitted by Karen E. Haneke, Integrated Laboratory Systems, Inc., January 2003, p 37

  190. Brookes K (2006) Improving the environment and QA results. Metal Powder Rep 61:26–31

    Google Scholar 

  191. Lunk HJ, Roychowdury S (2006) Suppression of tungsten’s leachability. Intern Conf Tungsten Refract Hardmet VII Orlando/USA Proc 7:107–115

    Google Scholar 

  192. Lunk HJ, Morgan RD, Stevens HJ (2006) Method for suppressing the leachability of certain metals like tungsten and lead. EP 1,683,878 A2, https://patentimages.storage.googleapis.com/33/3b/b5/62737e4be42161/EP1683878A2.pdf

Download references

Acknowledgments

The authors are indebted to Fritz Scholz for his invaluable discussions and stimulating ideas. We thank Anja Albrecht, Bernhard Altmann, Martin Fait, Nadiia Gumerova, Ulrich Kortz, Hugo Ortner and Annette Rompel for their support. Our special thanks go to Ralf T. Schmitt from Museum für Naturkunde Berlin for providing pictures of the minerals wolframite and scheelite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Lunk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunk, HJ., Hartl, H. Discovery, properties and applications of tungsten and its inorganic compounds. ChemTexts 5, 15 (2019). https://doi.org/10.1007/s40828-019-0088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-019-0088-1

Keywords

Navigation