Skip to main content
Log in

Urea-Water-Solution Properties: Density, Viscosity, and Surface Tension in an Under-Saturated Solution

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

A temperature-concentration dependent surface fit for the relative viscosity of a urea-water-solution (UWS) is calculated based on experimental and literature data. For the surface fit, a 2D Lorentzian function was used, where the x-axis was assigned to a urea mass fraction and the y-axis to the solution temperature and the rest of the Lorentzian function parameters were optimized based on the experimental and literature data. The surface model describes the relative viscosity of under-saturated urea-water-solution. The experimental data for the kinematic viscosity was measured with an Ubbelohde capillary viscometer whose temperature was controlled with a thermostat. The temperature and concentration range was from 293.15 to 353.15 K in 10-K increments and for urea mass fractions from 0.325 to 0.7. The kinematic viscosity values from the experiment were converted to relative viscosity by calculating the density of the UWS. An exponential fit was calculated to describe the specific gravity of the UWS based on literature data. Additionally, the surface tension of the UWS was measured at room temperature (293.15 K) in a mass fraction range from 0.302 to 0.596. As a result, simple models describing UWS properties were obtained and these models can be implemented into computational fluid dynamics (CFD) simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Surface fit parameter

D :

Capillary diameter

E :

Kinetic energy correction factor

k :

Capillary constant

L :

Capillary length

T :

Temperature

t :

Flow time

v :

Velocity

V :

Effective flux volume

w 1 :

Surface fit parameter

w 2 :

Surface fit parameter

y c :

Surface fit parameter

x :

Distance

x c :

Surface fit parameter

z 0 :

Surface fit parameter

γ :

Mass fraction

η:

Dynamic viscosity

ν :

Kinematic viscosity

ρ :

Density

σ :

Surface tension

τ :

Shear rate

water :

Variable describes water

uws :

Urea-water-solution

rel :

Relative value

References

  1. Koebel, M., Elsener, M., Kleemann, M.: Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today 59(3), 335–345 (2000)

    Article  Google Scholar 

  2. Yarin, A.L.: Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159–192 (2006)

    Article  Google Scholar 

  3. Smith, H., Lauer, T., Mayer, M., Pierson, S.: Optical and numerical investigations on the mechanisms of deposit formation in SCR systems. SAE Int. J. Fuels Lubricants 7(2), 525–542 (2014)

    Article  Google Scholar 

  4. Wang, T.J., Baek, S.W., Lee, S.Y., Kang, D.H., Yeo, G.K.: Experimental investigation on evaporation of urea-water-solution droplet for SCR applications. AICHE J. 55(12), 3267–3276 (2009)

    Article  Google Scholar 

  5. Chadwell, H., Asnes, B.: The viscosities of several aqueous solutions of organic substances. II. J. Am. Chem. Soc. 52(9), 3507–3518 (1930)

    Article  Google Scholar 

  6. Kawahara, K., Tanford, C.: Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J. Biol. Chem. 241(13), 3228–3232 (1966)

    Google Scholar 

  7. Toryanik, A.I., Topalova, E.M.: Effect of urea on the structure of water over a wide temperature range. J. Struct. Chem. 26(5), 830–832 (1986)

    Article  Google Scholar 

  8. Jones, G., Talley, S.K.: The viscosity of aqueous solutions as a function of the concentration. J. Am. Chem. Soc. 55(2), 624–642 (1933)

    Article  Google Scholar 

  9. Jäger, J., Nývlt, J., Horaček, S., Gottfried, J.: Viskositäten von harnstofflösungen. Collect. Czechoslov. Chem. Commun. 30(6), 2117–2121 (1965)

    Article  Google Scholar 

  10. BASF: AdBlue Technical Leaflet, (http://www.gabriels.be/sites/gabriels/files/pdf/technische_fiche_adblue-_engels.pdf) (2006). 30.12.2015

  11. Perman, E.P., Lovett, T.: Vapour pressure and heat of dilution of aqueous solutions. Trans. Faraday Soc. 22, 1–19 (1926)

    Article  Google Scholar 

  12. Birkhold, F., Meingast, U., Wassermann, P., Deutschmann, O.: Analysis of the injection of urea-water-solution for automotive SCR DeNOx-systems: modeling of two-phase flow and spray/wall-interaction. SAE Technical Papers. (2006)

  13. Ström, H., Lundström, A., Andersson, B.: Choice of urea-spray models in CFD simulations of urea-SCR systems. Chem. Eng. J. 150(1), 69–82 (2009)

    Article  Google Scholar 

  14. Viswanath, D.S., Ghosh, T., Prasad, D.H.L., Dutt, N.V.K., Rani, K.Y.: Chapter 1—introduction. In: Viscosity of Liquids Theory, Estimation, Experiment, and Data, pp. 1–2. Springer. (2007)

  15. LAUDA: Operating instructions, iVisc, http://www.lauda.de/fileadmin/user_upload/lauda/Documents/Betriebsanleitungen/Englisch/YAME0023_iVisc_09-09-28_fs.pdf, 10.12.2015 (PDF)

  16. Cannon, M.R., Manning, R.E., Bell, J.D.: Viscosity measurement: the kinetic energy correction and a new viscometer. Anal. Chem. 32(3), 355–358 (1960)

    Article  Google Scholar 

  17. Babkina, T.S., Kuznetsov, A.V.: Phase equilibria in binary subsystems of urea-biuret-water system. J. Therm. Anal. Calorim. 101(1), 33–40 (2010)

    Article  Google Scholar 

  18. Speyers, C.: Solubilities of some carbon compounds and densities of their solutions. Am. J. Sci. 4(82), 293–302 (1902)

    Article  Google Scholar 

  19. Pinck, L.A., Kelly, M.A.: The solubility of urea in water. J. Am. Chem. Soc. 47(8), 2170–2172 (1925)

    Article  Google Scholar 

  20. Kakinuma, H.: The solubility of urea in water. J. Phys. Chem. 45(6), 1045–1046 (1941)

    Article  Google Scholar 

  21. Miller Jr., F.W., Dittmar, H.R.: The solubility of urea in water. The heat of fusion of urea. J. Am. Chem. Soc. 56(4), 848–849 (1934)

    Article  Google Scholar 

  22. Hawley, G.G., Lewis, R.J.: Hawley’s Condensed Chemical Dictionary. Van Nostrand Reinhold, New York (1997)

    Google Scholar 

  23. The International Association for the Properties of Water and Steam: Revised Release on Surface Tension of Ordinary Water Substance (2014)

  24. Kell, G.S.: Density, thermal expansivity, and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20(1), 97–105 (1975)

  25. Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance. Berlin, Germany September 2008, available at http://www.iapws.org

  26. Yeoh, G.H., Tu, J.: Chapter 5—liquid–particle flows. In: Yeoh, G.H., Tu, J. (eds.) Computational Techniques for Multiphase Flows, pp. 313–349. Butterworth-Heinemann, Oxford (2010)

    Chapter  Google Scholar 

  27. Bandyopadhyay, D., Mohan, S., Ghosh, S.K., Choudhury, N.: Molecular dynamics simulation of aqueous urea solution: is urea a structure breaker? J. Phys. Chem. B 118(40), 11757–11768 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by the Proventia Emission Control Oy located in Oulunsalo, Finland. We would like to thank Mr. Arno Amberla and Mr. Jari Lotvonen. We would also like to thank Mr. Joni Kosamo from Oulu University of Applied Sciences for making the viscosity measurements possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sauli Halonen.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halonen, S., Kangas, T., Haataja, M. et al. Urea-Water-Solution Properties: Density, Viscosity, and Surface Tension in an Under-Saturated Solution. Emiss. Control Sci. Technol. 3, 161–170 (2017). https://doi.org/10.1007/s40825-016-0051-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-016-0051-1

Keywords

Navigation