Skip to main content
Log in

Partial molar volumes and viscous properties of glycine-aqueous urea solutions at 298.15 K

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Density (ρ) and viscosity (η) of glycine (c = 0.02–0.22 mol dm−3) in aqueous urea (c = 0.5, 1.5, and 3.0 mol dm−3) solutions were measured at 298.15 K. Experimental density data has been used to calculate apparent molar volumes (φv) of glycine in aqueous and aqueous-urea solutions at 298.15 K. The dependence of apparent molar volumes on concentration of glycine was fitted to the Massons relation and apparent molar volume of glycine at infinite dilution (partial molar volume, φ 0v ) was determined graphically. The partial molar volumes of transfer (Δtrφ 0v ) of glycine at infinite dilution from pure water to aqueous-urea solutions at 298.15 K were calculated and interpreted in terms of various interactions and structural fittings in studied solutions. The relative viscosity data has been analyzed by Jones-Dole relation and viscosity B-coefficients were determined graphically. Viscosity B-coefficient of transfer (ΔB) was also calculated and compared with Δtrφ 0v .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. B. Bull, K. Breese, G. L. Ferguson, and C. A. Swenson, Arch. Biochem. Biophys. 104, 297 (1964).

    Article  CAS  Google Scholar 

  2. S. R. Kanhekar, P. Pawar, and G. K. Bichile, Ind. J. Pure Appl. Phys. 48, 95 (2010).

    CAS  Google Scholar 

  3. R. Mehra and S. Vats, Int. J. Pharma. Bio Sci. 1, 523 (2010).

    CAS  Google Scholar 

  4. R. Mehra and B. B. Malav, Phys. Chem. Liq. 50, 465 (2012).

    Article  CAS  Google Scholar 

  5. G. Nayak, M. R. Senapati, and G. C. Pradhan, Ultra Chem. 9, 215 (2013).

    CAS  Google Scholar 

  6. V. P. Korolev, J. Struct. Chem. 49, 660 (2008).

    Article  CAS  Google Scholar 

  7. V. P. Korolev, O. A. Antonova, and N. L. Smirnova, J. Therm. Anal. Calorim. 108, 1 (2012).

    Article  CAS  Google Scholar 

  8. M. C. Stumpe and H. Grubmuller, J. Am. Chem. Soc. 129, 16126 (2007).

    Article  CAS  Google Scholar 

  9. M. A. Motin, T. K. Biswas, and E. M. Haque, Phys. Chem. Liq. 40, 593 (2002).

    Article  CAS  Google Scholar 

  10. S. D. Deosarkar, R. T. Sawale, A. R. Ban, and A. L. Puyad, J. Chem. Pharm. Res. 6, 390 (2014).

    Google Scholar 

  11. S. D. Deosarkar and M. L. Narwade, Rasayan J. Chem. 3, 55 (2010).

    CAS  Google Scholar 

  12. S. D. Deosarkar and A. S. Ghatbandhe, Russ. J. Phys. Chem. A 88, 32 (2014).

    Article  CAS  Google Scholar 

  13. S. D. Deosarkar, H. G. Jahagirdar, and V. B. Talwatkar, Rasayan J. Chem. 3, 755 (2010).

    CAS  Google Scholar 

  14. S. D. Deosarkar and U. B. Shaikh, Russ. J. Phys. Chem. A 83, 2392 (2013).

    CAS  Google Scholar 

  15. S. D. Deosarkar, Russ. J. Phys. Chem. A 86, 1507 (2012).

    Article  CAS  Google Scholar 

  16. M. Nath Roy, B. Sinha, R. Dey, and A. Sinha, Int. J. Thermophys. 26, 1549 (2005).

    Article  CAS  Google Scholar 

  17. A. G. Shankarwar, V. A. Shelke, S. G. Shankarwar, and B. R. Arbad, Chem. Sin. 2(4), 59 (2011).

    CAS  Google Scholar 

  18. S. Chauhan, P. Chaudhary, K. Sharma, K. Kumar, and Kiran, Chem. Pap. 67, 1442 (2013).

    Article  CAS  Google Scholar 

  19. D. O. Masson, Philos. Mag., Ser. 7 8(49), 218 (1929).

    Article  CAS  Google Scholar 

  20. D. Choudhary and A. Aswar, J. Therm. Anal. Calorim. 107, 21 (2012).

    Article  CAS  Google Scholar 

  21. A. Ali, S. Khan, and S. Hyder, J. Chin. Chem. Soc. 52, 512 (2005).

    Article  Google Scholar 

  22. V. Korolev and A. Serebryakova, J. Struct. Chem. 52, 1106 (2011).

    Article  CAS  Google Scholar 

  23. B. Sinha, P. K. Roy, and M. N. Roy, Acta Chim. Slov. 57, 651 (2010).

    CAS  Google Scholar 

  24. F. Shahidi, P. G. Harreil, and J. T. Edward, J. Solut. Chem. 5, 807 (1976).

    Article  CAS  Google Scholar 

  25. S. Shuang, L. Xiao-Mei, Y. Fang-Ping, H. Xin-Gen, and L. Rui-Sen, Acta Phys. Chim. Sin. 18, 595 (2002).

    Google Scholar 

  26. R. W. Gurney, Ionic Processes in Solution (McGraw Hill, New York, 1953).

    Google Scholar 

  27. H. Donald, B. Jenkins, and Y. Marcus, Chem. Rev. 95, 2695 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Deosarkar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deosarkar, S.D., Ban, A.R., Tawde, P.D. et al. Partial molar volumes and viscous properties of glycine-aqueous urea solutions at 298.15 K. Russ. J. Phys. Chem. 89, 1233–1237 (2015). https://doi.org/10.1134/S0036024415070080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415070080

Keywords

Navigation